A LOCAL LANGLANDS PARAMETERIZATION FOR GENERIC SUPERCUSPIDAL REPRESENTATIONS OF p-ADIC G2

被引:2
|
作者
Harris, Michael [1 ]
Khare, Chandrashekhar B. [2 ]
Thorne, Jack A. [3 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] UCLA, Dept Math, Los Angeles, CA USA
[3] Dept Pure Math & Math Stat, Wilberforce Rd, Cambridge, England
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2023年 / 56卷 / 01期
基金
欧盟地平线“2020”; 欧洲研究理事会; 美国国家科学基金会;
关键词
GALOIS GROUP; G(2); FUNCTORIALITY; CONJECTURE; THEOREMS; MODULES;
D O I
10.24033/asens.2533
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
- We construct a Langlands parameterization of supercuspidal representations of G2 over a p-adic field. More precisely, for any finite extension K/Qp we will construct a bijection .Cg :A & DEG;g(G2, K)-> g & DEG;(G2, K) from the set of generic supercuspidal representations of G2(K) to the set of irreducible continuous homomorphisms p : WK > G2(C) with WK the Weil group of K. The construction of the map is simply a matter of assembling arguments that are already in the literature, together with a previously unpublished theorem of G. Savin on exceptional theta correspondences, included as an appendix. The proof that the map is a bijection is arithmetic in nature, and specifically uses automorphy lifting theorems. These can be applied thanks to a recent result of Hundley and Liu on automorphic descent from GL(7) to G2.
引用
收藏
页码:257 / 286
页数:32
相关论文
共 35 条
  • [1] Dichotomy for generic supercuspidal representations of G2
    Savin, Gordan
    Weissman, Martin H.
    COMPOSITIO MATHEMATICA, 2011, 147 (03) : 735 - 783
  • [2] The generic dual of p-adic split SO 2n and local langlands parameters
    Jantzen, Chris
    Liu, Baiying
    ISRAEL JOURNAL OF MATHEMATICS, 2014, 204 (01) : 199 - 260
  • [3] Local p-adic Langlands correspondence and Kisin rings
    Colmez, Pierre
    Dospinescu, Gabriel
    Niziol, Wieslawa
    ACTA ARITHMETICA, 2023, 208 (02) : 101 - 126
  • [4] CORRESPONDENCE OF LANGLANDS LOCAL p-ADIC FOR GL2 (Qp)
    Berger, Laurent
    ASTERISQUE, 2011, (339) : 157 - 180
  • [5] The Local Langlands Correspondence for GLn over p-adic fields
    Scholze, Peter
    INVENTIONES MATHEMATICAE, 2013, 192 (03) : 663 - 715
  • [6] The Emerging p-adic Langlands Programme
    Breuil, Christophe
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL II: INVITED LECTURES, 2010, : 203 - 230
  • [7] Weak local-global compatibility in the p-adic Langlands program for U(2)
    Chojecki, Przemyslaw
    Sorensen, Claus
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2017, 137 : 101 - 133
  • [8] Transfer of Plancherel Measures for Unitary Supercuspidal Representations between p-adic Inner Forms
    Choiy, Kwangho
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2014, 66 (03): : 566 - 595
  • [9] Distinguished Generic Representations of GL(n) over p-adic Fields
    Matringe, Nadir
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2011, 2011 (01) : 74 - 95
  • [10] Patching and the p-adic Langlands program for GL2(Qp)
    Caraiani, Ana
    Emerton, Matthew
    Gee, Toby
    Geraghty, David
    Paskunas, Vytautas
    Shin, Sug Woo
    COMPOSITIO MATHEMATICA, 2018, 154 (03) : 503 - 548