Joint learning-based feature reconstruction and enhanced network for incomplete multi-modal brain tumor segmentation

被引:11
作者
Diao, Yueqin
Li, Fan [1 ]
Li, Zhiyuan
机构
[1] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Peoples R China
关键词
Incomplete multimodal learning; Brain tumor segmentation; Joint learning; Feature reconstruction; Feature enhancement;
D O I
10.1016/j.compbiomed.2023.107234
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multimodal Magnetic Resonance Imaging (MRI) can provide valuable complementary information and substantially enhance the performance of brain tumor segmentation. However, it is common for certain modalities to be absent or missing during clinical diagnosis, which can significantly impair segmentation techniques that rely on complete modalities. Current advanced methods attempt to address this challenge by developing shared feature representations via modal fusion to handle different missing modality situations. Considering the importance of missing modality information in multimodal segmentation, this paper utilize a feature reconstruction method to recover the missing information, and proposes a joint learning-based feature reconstruction and enhancement method for incomplete modality brain tumor segmentation. The method leverages an information learning mechanism to transfer information from the complete modality to a single modality, enabling it to obtain complete brain tumor information, even without the support of other modalities. Additionally, the method incorporates a module for reconstructing missing modality features, which recovers fused features of the absent modality through utilizing the abundant potential information obtained from the available modalities. Furthermore, the feature enhancement mechanism improves shared feature representation by utilizing the information obtained from the missing modalities that have been reconstructed. These processes enable the method to obtain more comprehensive information regarding brain tumors in various missing modality circumstances, thereby enhancing the model's robustness. The performance of the proposed model was evaluated on BraTS datasets and compared with other deep learning algorithms using Dice similarity scores. On the BraTS2018 dataset, the proposed algorithm achieved a Dice similarity score of 86.28%, 77.02%, and 59.64% for whole tumors, tumor cores, and enhanced tumors, respectively. These results demonstrate the superiority of our framework over state-of-the-art methods in missing modalities situations.
引用
收藏
页数:11
相关论文
共 46 条
[1]  
Azad R, 2022, PR MACH LEARN RES, V172, P48
[2]  
Chen BZ, 2022, Arxiv, DOI arXiv:2107.05274
[3]   Robust Multimodal Brain Tumor Segmentation via Feature Disentanglement and Gated Fusion [J].
Chen, Cheng ;
Dou, Qi ;
Jin, Yueming ;
Chen, Hao ;
Qin, Jing ;
Pheng-Ann Heng .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT III, 2019, 11766 :447-456
[4]  
Chen J., 2021, arXiv
[5]  
Ding Y., 2021, P IEEECVF INT C COMP, P3975
[6]   Hetero-Modal Variational Encoder-Decoder for Joint Modality Completion and Segmentation [J].
Dorent, Reuben ;
Joutard, Samuel ;
Modat, Marc ;
Ourselin, Sebastien ;
Vercauteren, Tom .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II, 2019, 11765 :74-82
[7]  
Dosovitskiy Alexey., 2021, PROC INT C LEARN REP, P2021, DOI [10.48550/arXiv.2010.11929, DOI 10.48550/ARXIV.2010.11929]
[8]   Cross-Modal Retrieval and Synthesis (X-MRS): Closing the Modality Gap in Shared Representation Learning [J].
Guerrero, Ricardo ;
Pham, Hai X. ;
Pavlovic, Vladimir .
PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, :3192-3201
[9]   Domain Knowledge Based Brain Tumor Segmentation and Overall Survival Prediction [J].
Guo, Xiaoqing ;
Yang, Chen ;
Lam, Pak Lun ;
Woo, Peter Y. M. ;
Yuan, Yixuan .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT II, 2020, 11993 :285-295
[10]   Swin UNETR: Swin Transformers for Semantic Segmentation of Brain Tumors in MRI Images [J].
Hatamizadeh, Ali ;
Nath, Vishwesh ;
Tang, Yucheng ;
Yang, Dong ;
Roth, Holger R. ;
Xu, Daguang .
BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 :272-284