In Situ Pyrolysis of 3D Printed Building Blocks for Functional Nanoscale Metamaterials

被引:6
|
作者
Sun, Qing [1 ]
Dolle, Christian [1 ]
Kurpiers, Chantal [2 ]
Kraft, Kristian [1 ]
Islam, Monsur [3 ]
Schwaiger, Ruth [4 ]
Gumbsch, Peter [2 ,5 ]
Eggeler, Yolita M. M. [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Lab Electron Microscopy LEM, Microscopy Nanoscale Struct & Mech MNM, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM, D-76131 Karlsruhe, Germany
[3] Karlsruhe Inst Technol KIT, Inst Microstruct Technol IMT, D-76344 Eggenstein Leopoldshafen, Germany
[4] Forschungszentrum Julich GmbH, Inst Energy & Climate Res IEK, D-52428 Julich, Germany
[5] Fraunhofer Inst Mech Mat IWM, D-79108 Freiburg, Germany
关键词
3D printing; in situ electron microscopy; metamaterials; pyrolysis; two-photon lithography; GLASSY-CARBON; MICROSTRUCTURES; MICRO; LITHOGRAPHY; FABRICATION; ELECTRODES; SHRINKING; FILMS;
D O I
10.1002/adfm.202302358
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study presents a novel approach for investigating the shrinkage dynamics of 3D-printed nanoarchitectures during isothermal pyrolysis, utilizing in situ electron microscopy. For the first time, the temporal evolution of 3D structures is tracked continuously until a quasi-stationary state is reached. By subjecting the 3D objects to different temperatures and atmospheric conditions, significant changes in the resulting kinetic parameters and morphological textures of the 3D objects are observed, particularly those possessing varying surface-to-volume ratios. Its results reveal that the effective activation energy required for pyrolysis-induced morphological shrinkage is approximately four times larger under vacuum conditions than in a nitrogen atmosphere (2.6 eV vs. 0.5-0.9 eV, respectively). Additionally, a subtle enrichment of oxygen on the surfaces of the structures for pyrolysis in nitrogen is found through a postmortem electron energy loss spectroscopy study, differentiating the vacuum pyrolysis. These findings are examined in the context of the underlying process parameters, and a mechanistic model is proposed. As a result, understanding and controlling pyrolysis in 3D structures of different geometrical dimensions not only enables precise modification of shrinkage and the creation of tensegrity structures, but also promotes pyrolytic carbon development with custom architectures and properties, especially in the field of carbon micro- and nano-electromechanical systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] 3D Printed Electrochemical Sensors
    Abdalla, Aya
    Patel, Bhavik Anil
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 14, 2021, 2021, 14 : 47 - 63
  • [42] High-resolution direct 3D printed PLGA scaffolds: print and shrink
    Chia, Helena N.
    Wu, Benjamin M.
    BIOFABRICATION, 2015, 7 (01)
  • [43] 3D printed auxetic metamaterials with tunable mechanical properties and morphological fitting abilities
    Yuan, Yazhou
    Ma, Suqian
    Sun, Xianyan
    Chen, Boya
    Luo, Yuchao
    Lin, Zhaohua
    Liang, Yunhong
    MATERIALS & DESIGN, 2024, 244
  • [44] X Wave Radiator Implemented With 3-D Printed Metamaterials
    Chiotellis, Nikolaos
    Zhang, Shiyu
    Vardaxoglou, Yiannis C.
    Grbic, Anthony
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2020, 68 (07) : 5478 - 5486
  • [45] A review on 3D printed bioimplants
    Ho, Chee Meng Benjamin
    Ng, Sum Huan
    Yoon, Yong-Jin
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2015, 16 (05) : 1035 - 1046
  • [46] 3D printed device for epitachophoresis
    Voracova, Ivona
    Prikryl, Jan
    Novotny, Jakub
    Datinska, Vladimira
    Yang, Jaeyoung
    Astier, Yann
    Foret, Frantisek
    ANALYTICA CHIMICA ACTA, 2021, 1154
  • [47] 3D Printed Nanophotonic Waveguides
    Pyo, Jaeyeon
    Kim, Ji Tae
    Lee, Junho
    Yoo, Jewon
    Je, Jung Ho
    ADVANCED OPTICAL MATERIALS, 2016, 4 (08): : 1190 - 1195
  • [48] 3D Printed Interactive Speakers
    Ishiguro, Yoshio
    Poupyrev, Ivan
    32ND ANNUAL ACM CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2014), 2014, : 1733 - 1742
  • [49] Polymeric 3D Printed Functional Microcantilevers for Biosensing Applications
    Stassi, Stefano
    Fantino, Erika
    Calmo, Roberta
    Chiappone, Annalisa
    Gillono, Matteo
    Scaiola, Davide
    Pirri, Candido Fabrizio
    Ricciardi, Carlo
    Chiado, Alessandro
    Roppolo, Ignazio
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (22) : 19193 - 19201
  • [50] Carbon Nanotube-Bridged Graphene 3D Building Blocks for Ultrafast Compact Supercapacitors
    Duy Tho Pham
    Lee, Tae Hoon
    Luong, Dinh Hoa
    Yao, Fei
    Ghosh, Arunabha
    Viet Thong Le
    Kim, Tae Hyung
    Li, Bing
    Chang, Jian
    Lee, Young Hee
    ACS NANO, 2015, 9 (02) : 2018 - 2027