In Situ Pyrolysis of 3D Printed Building Blocks for Functional Nanoscale Metamaterials

被引:6
|
作者
Sun, Qing [1 ]
Dolle, Christian [1 ]
Kurpiers, Chantal [2 ]
Kraft, Kristian [1 ]
Islam, Monsur [3 ]
Schwaiger, Ruth [4 ]
Gumbsch, Peter [2 ,5 ]
Eggeler, Yolita M. M. [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Lab Electron Microscopy LEM, Microscopy Nanoscale Struct & Mech MNM, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol KIT, Inst Appl Mat IAM, D-76131 Karlsruhe, Germany
[3] Karlsruhe Inst Technol KIT, Inst Microstruct Technol IMT, D-76344 Eggenstein Leopoldshafen, Germany
[4] Forschungszentrum Julich GmbH, Inst Energy & Climate Res IEK, D-52428 Julich, Germany
[5] Fraunhofer Inst Mech Mat IWM, D-79108 Freiburg, Germany
关键词
3D printing; in situ electron microscopy; metamaterials; pyrolysis; two-photon lithography; GLASSY-CARBON; MICROSTRUCTURES; MICRO; LITHOGRAPHY; FABRICATION; ELECTRODES; SHRINKING; FILMS;
D O I
10.1002/adfm.202302358
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study presents a novel approach for investigating the shrinkage dynamics of 3D-printed nanoarchitectures during isothermal pyrolysis, utilizing in situ electron microscopy. For the first time, the temporal evolution of 3D structures is tracked continuously until a quasi-stationary state is reached. By subjecting the 3D objects to different temperatures and atmospheric conditions, significant changes in the resulting kinetic parameters and morphological textures of the 3D objects are observed, particularly those possessing varying surface-to-volume ratios. Its results reveal that the effective activation energy required for pyrolysis-induced morphological shrinkage is approximately four times larger under vacuum conditions than in a nitrogen atmosphere (2.6 eV vs. 0.5-0.9 eV, respectively). Additionally, a subtle enrichment of oxygen on the surfaces of the structures for pyrolysis in nitrogen is found through a postmortem electron energy loss spectroscopy study, differentiating the vacuum pyrolysis. These findings are examined in the context of the underlying process parameters, and a mechanistic model is proposed. As a result, understanding and controlling pyrolysis in 3D structures of different geometrical dimensions not only enables precise modification of shrinkage and the creation of tensegrity structures, but also promotes pyrolytic carbon development with custom architectures and properties, especially in the field of carbon micro- and nano-electromechanical systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] EVALUATION OF THE MECHANICAL BEHAVIOR OF 3D PRINTED CELLULAR METAMATERIALS WITH SPECIAL GEOMETRIES
    Sava, Rares
    Apostol, Dragos Alexandru
    Constantinescu, Dan Mihai
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2023, 24 (01): : 63 - 72
  • [32] A 3D Printed Modular Soft Gripper Integrated With Metamaterials for Conformal Grasping
    Tawk, Charbel
    Mutlu, Rahim
    Alici, Gursel
    FRONTIERS IN ROBOTICS AND AI, 2022, 8
  • [33] Superior compressive properties of 3D printed plate lattice mechanical metamaterials
    Hu, Jingdan
    Tan, Alvin T. L.
    Chen, Hui
    Hu, Xiao
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2022, 231
  • [34] Intelligent biomaterials for micro and nanoscale 3D printing
    Zhang, Bing
    Li, Shikang
    Zhang, Zhifeng
    Meng, Zijie
    He, Jiankang
    Ramakrishna, Seeram
    Zhang, Chao
    CURRENT OPINION IN BIOMEDICAL ENGINEERING, 2023, 26
  • [35] STRUCTURE-RESISTANCE RELATIONSHIP OF 3D PRINTED ELECTRICALLY CONDUCTIVE WOODPILE-STRUCTURED METAMATERIALS
    Vasilyan, Hayk
    Lapuz, Oginne
    Susantyoko, Rahmat Agung
    Almheiri, Ahmad
    Alyammahi, Mozah
    PROCEEDINGS OF ASME 2022 INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, IMECE2022, VOL 3, 2022,
  • [36] 3D printed and structurally strengthened ammonia sensor
    Zhou, Shixiang
    Mei, Hui
    Lu, Mingyang
    Cheng, Laifei
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2020, 139
  • [37] 3D-Printed Micro/Nano-Scaled Mechanical Metamaterials: Fundamentals, Technologies, Progress, Applications, and Challenges
    Su, Ruyue
    Chen, Jingyi
    Zhang, Xueqin
    Wang, Wenqing
    Li, Ying
    He, Rujie
    Fang, Daining
    SMALL, 2023, 19 (29)
  • [38] 3D Antennas, Metamaterials, and Additive Manufacturing
    Zhang, Shiyu
    Cadman, Darren
    Whittow, Will
    Wang, Dawei
    Chi-Tangyie, George
    Ghosh, Avishek
    Ketharam, Annapoorani
    Goulas, Athanasios
    Reaney, Ian
    Vaidhyanathan, Bala
    Engstrom, Daniel
    Vardaxoglou, J. C.
    2019 IEEE MTT-S INTERNATIONAL WIRELESS SYMPOSIUM (IWS 2019), 2019,
  • [39] Application of 3D Printing in the Metamaterials Designing
    Kosic, Boris
    Dragicevic, Aleksandra
    Jeli, Zorana
    Marinescu, Gabriel-Catalin
    COMPUTATIONAL AND EXPERIMENTAL APPROACHES IN MATERIALS SCIENCE AND ENGINEERING, CNNTECH 2019, 2020, 90 : 166 - 183
  • [40] 3D printed microfluidics and microelectronics
    Sochol, Ryan D.
    Sweet, Eric
    Glick, Casey C.
    Wu, Sung-Yueh
    Yang, Chen
    Restaino, Michael
    Lin, Liwei
    MICROELECTRONIC ENGINEERING, 2018, 189 : 52 - 68