The miR-21-5p enriched in the apoptotic bodies of M2 macrophage-derived extracellular vesicles alleviates osteoarthritis by changing macrophage phenotype

被引:17
|
作者
Qin, Leilei [1 ,2 ]
Yang, Jianye [1 ,2 ]
Su, Xudong [1 ,2 ]
li, Xilan [3 ]
Lei, Yiting [1 ,2 ]
Dong, Lili [1 ,2 ]
Chen, Hong [1 ,2 ]
Chen, Cheng [1 ,2 ]
Zhao, Chen [1 ,2 ]
Zhang, Huan [1 ,2 ]
Deng, Jun [3 ]
Hu, Ning [1 ,2 ]
Huang, Wei [1 ,2 ]
机构
[1] Chongqing Med Univ, Affiliated Hosp 1, Dept Orthopaed, Chongqing 400016, Peoples R China
[2] Chongqing Med Univ, Orthoped Lab, Affiliated Hosp 1, Chongqing 400016, Peoples R China
[3] Army Med Univ, Southwest Hosp, Inst Burn Res, State Key Lab Trauma Burn & Combined Injury, Chongqing 400038, Peoples R China
基金
中国国家自然科学基金;
关键词
Apoptotic body; Extracellular vesicles; Macrophage phenotype switch; MicroRNA-21; Osteoarthritis; HORIZONTAL TRANSFER; EXOSOMES; BIOLOGY; DAMAGE; CELLS;
D O I
10.1016/j.gendis.2022.09.010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Macrophages (M4s) play a crucial role in the pathological progression of osteoar-thritis (OA) by regulating inflammation and tissue repair. Decreasing pro-inflammatory M1-M4s and increasing anti-inflammatory M2-M4s can alleviate OA-related inflammation and pro-mote cartilage repair. Apoptosis is a natural process associated with tissue repair. A large num-ber of apoptotic bodies (ABs), a type of extracellular vesicle, are produced during apoptosis, and this is associated with a reduction in inflammation. However, the functions of apoptotic bodies remain largely unknown. In this study, we investigated the role of M2-M4s-derived apoptotic bodies (M2-ABs) in regulating the M1/M2 balance of macrophages in a mouse model of OA. Our data show that M2-ABs can be targeted for uptake by M1-M9s, and this reprograms M1-to-M2 phenotypes within 24 h. The M2-ABs significantly ameliorated the severity of OA, alleviated the M1-mediated pro-inflammatory environment, and inhibited chondrocyte apoptosis in mice. RNA-seq revealed that M2-ABs were enriched with miR-21-5p, a microRNA that is negatively correlated with articular cartilage degeneration. Inhibiting the function of miR-21-5p in M1-M9s significantly reduced M2-ABs-guided M1-to-M2 reprogramming following in vitro cell transfection. Together, these results suggest that M2-derived apoptotic bodies can prevent articular cartilage damage and improve gait abnormalities in OA mice by reversing the inflammatory response caused by M1 macrophages. The mechanism underlying these findings may be related to miR-21-5p-regulated inhibition of inflammatory factors. The application of M2-ABs may represent a novel cell therapy, and could provide a valuable strategy for the treatment of OA and/or chronic inflammation. 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons. org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1114 / 1129
页数:16
相关论文
共 50 条
  • [41] Down-regulated lncRNA SBF2-AS1 in M2 macrophage-derived exosomes elevates miR-122-5p to restrict XIAP, thereby limiting pancreatic cancer development
    Yin, Zi
    Zhou, Yu
    Ma, Tingting
    Chen, Sheng
    Shi, Ning
    Zou, Yiping
    Hou, Baohua
    Zhang, Chuanzhao
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2020, 24 (09) : 5028 - 5038
  • [42] Role of miR-21-5p in the protective effects of PLGA-encapsulated extracellular vesicles from urine-derived stem cells on periprosthetic osteolysis
    Wang, Yinan
    Li, Hui
    Fan, Xiaolei
    Ma, Tianliang
    Lu, Wei
    Hu, Yihe
    Xie, Jie
    APPLIED MATERIALS TODAY, 2024, 38
  • [43] GABA alleviates high glucose-induced podocyte injury through dynamically altering the expression of macrophage M1/M2-derived exosomal miR-21a-5p/miR-25-3p
    Zhuang, Yibo
    Zheng, Hongxue
    Yang, Yong
    Ni, Huiping
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2022, 618 : 38 - 45
  • [44] M2 macrophage-derived exosomes carry miR-142-3p to restore the differentiation balance of irradiated BMMSCs by targeting TGF-β1
    Chong Huang
    Lu Zhao
    Yun Xiao
    Zihao Tang
    Li Jing
    Kai Guo
    Lei Tian
    Chunlin Zong
    Molecular and Cellular Biochemistry, 2024, 479 : 993 - 1010
  • [45] M2 bone marrow-derived macrophage-derived exosomes shuffle microRNA-21 to accelerate immune escape of glioma by modulating PEG3
    Fan Yang
    Tiecheng Wang
    Peng Du
    Haitao Fan
    Xushuai Dong
    Hua Guo
    Cancer Cell International, 20
  • [46] M2 macrophage-derived exosomes carry miR-142-3p to restore the differentiation balance of irradiated BMMSCs by targeting TGF-β1
    Huang, Chong
    Zhao, Lu
    Xiao, Yun
    Tang, Zihao
    Jing, Li
    Guo, Kai
    Tian, Lei
    Zong, Chunlin
    MOLECULAR AND CELLULAR BIOCHEMISTRY, 2024, 479 (04) : 993 - 1010
  • [47] RETRACTED ARTICLE: microRNA-15b-5p encapsulated by M2 macrophage-derived extracellular vesicles promotes gastric cancer metastasis by targeting BRMS1 and suppressing DAPK1 transcription
    Yi Cao
    Yi Tu
    Jianbo Xiong
    Shengxing Tan
    Lianghua Luo
    Ahao Wu
    Xufeng Shu
    Zhigang Jie
    Zhengrong Li
    Journal of Experimental & Clinical Cancer Research, 41
  • [48] Extracellular Vesicles Obtained From Lung Adenocarcinoma Cells Cultured Under Intermittent Hypoxia Induce M2 Macrophage Polarization via miR-20a-5p Delivery
    Liu, Yuanling
    Lu, Minzhen
    Liu, Feng
    Xu, Gang
    Feng, Congrui
    Chen, Yuluo
    Cai, Danyan
    Sun, Huake
    Zeng, Yanjun
    Xie, Jian
    Ma, Wei
    Gao, Xinglin
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2024, 23
  • [49] RETRACTED ARTICLE: M2 macrophage-derived extracellular vesicles promote gastric cancer progression via a microRNA-130b-3p/MLL3/GRHL2 signaling cascade
    Yu Zhang
    Wenbo Meng
    Ping Yue
    Xun Li
    Journal of Experimental & Clinical Cancer Research, 39
  • [50] M2 macrophage-derived exosomal miR-193b-3p promotes progression and glutamine uptake of pancreatic cancer by targeting TRIM62
    Zhang, Ke
    Li, Yu-Jie
    Peng, Lin-Jia
    Gao, Hui-Feng
    Liu, Lu-Ming
    Chen, Hao
    BIOLOGY DIRECT, 2023, 18 (01)