Topological equivariant coarse K-homology

被引:2
|
作者
Bunke, Ulrich [1 ]
Engel, Alexander [2 ]
机构
[1] Univ Regensburg, Fak Math, Regensburg, Germany
[2] Univ Greifswald, Inst Math & Informat, Greifswald, Germany
关键词
coarse homology; K-theory; CONNES CONJECTURE; HOMOTOPY-THEORY; BAUM-CONNES;
D O I
10.2140/akt.2023.8.141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a C*-category with a strict G-action we construct examples of equivariant coarse homology theories. To this end we first introduce versions of Roe cate-gories of objects in C*-categories which are controlled over bornological coarse spaces, and then apply a homological functor. These equivariant coarse homology theories are then employed to verify that certain functors on the orbit category are CP-functors. This fact has consequences for the injectivity of assembly maps.
引用
收藏
页码:141 / 220
页数:81
相关论文
共 50 条
  • [31] On the geometric fixed points of real topological cyclic homology
    Dotto, Emanuele
    Moi, Kristian
    Patchkoria, Irakli
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 109 (02):
  • [32] Equivariant K-theory, groupoids and proper actions
    Cantarero, Jose
    JOURNAL OF K-THEORY, 2012, 9 (03) : 475 - 501
  • [33] Equivariant K-theory of smooth toric varieties
    Baggio, Silvano
    TOHOKU MATHEMATICAL JOURNAL, 2007, 59 (02) : 203 - 231
  • [34] Completed K-theory and equivariant elliptic cohomology
    Luecke, Kiran
    ADVANCES IN MATHEMATICS, 2022, 410
  • [35] Topological phases: Isomorphism, homotopy and K-theory
    Thiang, Guo Chuan
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (09)
  • [36] Comparing cyclotomic structures on different models for topological Hochschild homology
    Dotto, Emanuele
    Malkiewich, Cary
    Patchkoria, Irakli
    Sagave, Steffen
    Woo, Calvin
    JOURNAL OF TOPOLOGY, 2019, 12 (04) : 1146 - 1173
  • [37] Y Kaledin's degeneration theorem and topological Hochschild homology
    Mathew, Akhil
    GEOMETRY & TOPOLOGY, 2020, 24 (06) : 2675 - 2708
  • [38] Topological Hochschild homology and the Hasse-Weil zeta function
    Hesselholt, Lars
    ALPINE BOUQUET OF ALGEBRAIC TOPOLOGY, 2018, 708 : 157 - 180
  • [39] THE NON-NIL-INVARIANCE OF PERIODIC TOPOLOGICAL CYCLIC HOMOLOGY
    Horiuchi, Ryo
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2020, 22 (02) : 173 - 179
  • [40] WITT VECTORS, POLYNOMIAL MAPS, AND REAL TOPOLOGICAL HOCHSCHILD HOMOLOGY
    Dotto, Emanuele
    Patchkoria, Irakli
    Jonsson Moi, Kristian
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2022, 55 (02): : 473 - 535