Topological equivariant coarse K-homology

被引:3
作者
Bunke, Ulrich [1 ]
Engel, Alexander [2 ]
机构
[1] Univ Regensburg, Fak Math, Regensburg, Germany
[2] Univ Greifswald, Inst Math & Informat, Greifswald, Germany
关键词
coarse homology; K-theory; CONNES CONJECTURE; HOMOTOPY-THEORY; BAUM-CONNES;
D O I
10.2140/akt.2023.8.141
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a C*-category with a strict G-action we construct examples of equivariant coarse homology theories. To this end we first introduce versions of Roe cate-gories of objects in C*-categories which are controlled over bornological coarse spaces, and then apply a homological functor. These equivariant coarse homology theories are then employed to verify that certain functors on the orbit category are CP-functors. This fact has consequences for the injectivity of assembly maps.
引用
收藏
页码:141 / 220
页数:81
相关论文
共 33 条
[1]  
[Anonymous], 2001, Algebr. Geom. Topol., DOI [10.2140/agt.2001.1.271, DOI 10.2140/AGT.2001.1.271]
[2]  
Bartels A., 2010, SPRINGER P MATH STAT, V184
[3]   The K-theoretic Farrell-Jones conjecture for hyperbolic groups [J].
Bartels, Arthur ;
Lueck, Wolfgang ;
Reich, Holger .
INVENTIONES MATHEMATICAE, 2008, 172 (01) :29-70
[4]  
Bunke U, 2020, LECT NOTES MATH, V2269, P1, DOI 10.1007/978-3-030-51335-1
[5]  
Bunke U., 2021, ARXIV
[6]  
Bunke U, 2021, Arxiv, DOI arXiv:2111.02490
[7]  
Bunke U, 2021, Arxiv, DOI arXiv:2010.14830
[8]  
Bunke U, 2021, Arxiv, DOI arXiv:2008.06257
[9]  
Bunke U, 2022, Arxiv, DOI [arXiv:2102.13372, 10.48550/arXiv.2102.13372]
[10]  
Bunke U, 2023, Arxiv, DOI arXiv:2107.02843