Optical Reading of Nanoscale Magnetic Bits in an Integrated Photonic Platform

被引:6
作者
Pezeshki, Hamed [1 ,2 ]
Li, Pingzhi [1 ]
Lavrijsen, Reinoud [1 ,2 ]
van der Tol, Jos J. G. M. [2 ]
Koopmans, Bert [1 ,2 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, NL-5612 AZ Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Eindhoven Hendrik Casimir Inst, Ctr Photon Integrat, NL-5600 MB Eindhoven, Netherlands
关键词
Photonic integrated circuits; plasmonics; spintronics; indium phosphide; magneto-plasmonics; polar magneto-optical Kerr effect; COMPACT;
D O I
10.1109/JQE.2022.3224782
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
this paper, we propose a compact integrated hybrid plasmonic-photonic device for optical reading of nanoscale magnetic bits with perpendicular magnetic anisotropy in a magnetic racetrack on top of a photonic waveguide on the indium phosphide membrane on silicon platform. The hybrid device is constructed by coupling a doublet of V-shaped gold plasmonic nanoantennas on top of the indium phosphide waveguide. By taking advantage of the localized surface plasmons, our hybrid device can enable detection of the magnetization state in magnetic bits beyond the diffraction limit of light and enhance the polar magneto-optical Kerr effect (PMOKE). We further illustrate how combining the hybrid device with a plasmonic polarization rotator provides magneto-optical read-out by transforming the PMOKE-induced polarization change into an intensity variation of the waveguide mode. According to the simulation results based on a three-dimensional finite-difference time-domain method, the hybrid device can detect the magnetization states in targeted bits in a magnetic racetrack medium down to similar to 100 x 100 nm(2), regardless of the magnetization state of the rest of the racetrack with a relative intensity contrast of greater than 0.5% for a similar to 200 x 100 nm(2) magnetic bit. We believe our hybrid device can be an enabling technology that can connect integrated photonics with nanoscale spintronics, paving the way toward ultrafast and energy efficient advanced on-chip applications.
引用
收藏
页数:8
相关论文
共 31 条
  • [1] [Anonymous], 2020, LUM FDTD SOLV
  • [2] [Anonymous], 2018, IEEE PHOTON J
  • [3] Magnetic Racetrack Memory: From Physics to the Cusp of Applications Within a Decade
    Blasing, Robin
    Khan, Asif Ali
    Filippou, Panagiotis Ch
    Garg, Chirag
    Hameed, Fazal
    Castrillon, Jeronimo
    Parkin, Stuart S. P.
    [J]. PROCEEDINGS OF THE IEEE, 2020, 108 (08) : 1303 - 1321
  • [4] Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology
    Bogaerts, W
    Baets, R
    Dumon, P
    Wiaux, V
    Beckx, S
    Taillaert, D
    Luyssaert, B
    Van Campenhout, J
    Bienstman, P
    Van Thourhout, D
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (01) : 401 - 412
  • [5] Silicon microring resonators
    Bogaerts, Wim
    De Heyn, Peter
    Van Vaerenbergh, Thomas
    De Vos, Katrien
    Selvaraja, Shankar Kumar
    Claes, Tom
    Dumon, Pieter
    Bienstman, Peter
    Van Thourhout, Dries
    Baets, Roel
    [J]. LASER & PHOTONICS REVIEWS, 2012, 6 (01) : 47 - 73
  • [6] Collett E., 2005, SPIE FIELD GUIDES, DOI [10.1117/3.626141, DOI 10.1117/3.626141]
  • [7] An integrated photonic device for on-chip magneto-optical memory reading
    Demirer, Figen Ece
    Baron, Yngwie
    Reniers, Sander
    Pustakhod, Dzmitry
    Lavrijsen, Reinoud
    van der Tol, Jos
    Koopmans, Bert
    [J]. NANOPHOTONICS, 2022, 11 (14) : 3319 - 3329
  • [8] Opportunities and challenges for spintronics in the microelectronics industry
    Dieny, B.
    Prejbeanu, I. L.
    Garello, K.
    Gambardella, P.
    Freitas, P.
    Lehndorff, R.
    Raberg, W.
    Ebels, U.
    Demokritov, S. O.
    Akerman, J.
    Deac, A.
    Pirro, P.
    Adelmann, C.
    Anane, A.
    Chumak, A. V.
    Hirohata, A.
    Mangin, S.
    Valenzuela, Sergio O.
    Onbasli, M. Cengiz
    D'Aquino, M.
    Prenat, G.
    Finocchio, G.
    Lopez-Diaz, L.
    Chantrell, R.
    Chubykalo-Fesenko, O.
    Bortolotti, P.
    [J]. NATURE ELECTRONICS, 2020, 3 (08) : 446 - 459
  • [9] Magnetoplasmonic properties of perpendicularly magnetized [Co/Pt]N nanodots
    Freire-Fernandez, Francisco
    Mansell, Rhodri
    van Dijken, Sebastiaan
    [J]. PHYSICAL REVIEW B, 2020, 101 (05)
  • [10] On-chip plasmonic waveguide optical waveplate
    Gao, Linfei
    Huo, Yijie
    Zang, Kai
    Paik, Seonghyun
    Chen, Yusi
    Harris, James S.
    Zhou, Zhiping
    [J]. SCIENTIFIC REPORTS, 2015, 5