Multiclass Land Use and Land Cover Classification of Andean Sub-Basins in Colombia with Sentinel-2 and Deep Learning

被引:7
|
作者
Arrechea-Castillo, Darwin Alexis [1 ]
Solano-Correa, Yady Tatiana [1 ,2 ]
Munoz-Ordonez, Julian Fernando [1 ,3 ]
Pencue-Fierro, Edgar Leonairo [1 ,4 ]
Figueroa-Casas, Apolinar [4 ]
机构
[1] Univ Cauca, Grp Opt & Laser GOL, Cauca 190003, Colombia
[2] Univ Tecnol Bolivar, Grp Invest Fis Aplicada & Proc Imagenes & Senales, Bolivar 130001, Colombia
[3] Corp Univ Comfacauca Unicomfacauca, Grp Invest Comp Informat Aplicada MIND, Cauca 190003, Colombia
[4] Univ Cauca, Grp Estudios Ambientales GEA, Cauca 190003, Colombia
基金
英国科研创新办公室;
关键词
land cover classification; land use classification; deep learning; convolutional neural network; remote sensing; sentinel-2; VEGETATION INDEXES; LEAF-AREA; PERFORMANCE; WATER;
D O I
10.3390/rs15102521
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Land Use and Land Cover (LULC) classification using remote sensing data is a challenging problem that has evolved with the update and launch of new satellites in orbit. As new satellites are launched with higher spatial and spectral resolution and shorter revisit times, LULC classification has evolved to take advantage of these improvements. However, these advancements also bring new challenges, such as the need for more sophisticated algorithms to process the increased volume and complexity of data. In recent years, deep learning techniques, such as convolutional neural networks (CNNs), have shown promising results in this area. Training deep learning models with complex architectures require cutting-edge hardware, which can be expensive and not accessible to everyone. In this study, a simple CNN based on the LeNet architecture is proposed to perform LULC classification over Sentinel-2 images. Simple CNNs such as LeNet require less computational resources compared to more-complex architectures. A total of 11 LULC classes were used for training and validating the model, which were then used for classifying the sub-basins. The analysis showed that the proposed CNN achieved an Overall Accuracy of 96.51% with a kappa coefficient of 0.962 in the validation data, outperforming traditional machine learning methods such as Random Forest, Support Vector Machine and Artificial Neural Networks, as well as state-of-the-art complex deep learning methods such as ResNet, DenseNet and EfficientNet. Moreover, despite being trained in over seven million images, it took five h to train, demonstrating that our simple CNN architecture is only effective but is also efficient.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Evaluating the impact of sampling designs on the performance of machine learning techniques for land use land cover classification using Sentinel-2 data
    Rawat, Shivam
    Saini, Rashmi
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (24) : 7889 - 7908
  • [22] ASSESSMENT OF CLASSIFICATION ACCURACIES OF SENTINEL-2 AND LANDSAT-8 DATA FOR LAND COVER/USE MAPPING
    Topaloglu, Raziye Hale
    Sertel, Elif
    Musaoglu, Nebiye
    XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 41 (B8): : 1055 - 1059
  • [23] Deep and Ensemble Learning Based Land Use and Land Cover Classification
    Benbriqa, Hicham
    Abnane, Ibtissam
    Idri, Ali
    Tabiti, Khouloud
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS, ICCSA 2021, PT III, 2021, 12951 : 588 - 604
  • [24] Improving Urban Land Cover Classification with Combined Use of Sentinel-2 and Sentinel-1 Imagery
    Hu, Bin
    Xu, Yongyang
    Huang, Xiao
    Cheng, Qimin
    Ding, Qing
    Bai, Linze
    Li, Yan
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (08)
  • [25] Post-processing tools for land cover classification of Sentinel-2
    Gromny, Ewa
    Lewinski, Stanislaw
    Rybicki, Marcin
    Malinowski, Radoslaw
    Krupinski, Michal
    Nowakowski, Artur
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS 2019, 2019, 11176
  • [26] Performance Evaluation of Downscaling Sentinel-2 Imagery for Land Use and Land Cover Classification by Spectral-Spatial Features
    Zheng, Hongrui
    Du, Peijun
    Chen, Jike
    Xia, Junshi
    Li, Erzhu
    Xu, Zhigang
    Li, Xiaojuan
    Yokoya, Naoto
    REMOTE SENSING, 2017, 9 (12)
  • [27] Land Cover Classification From Sentinel-2 Images With Quantum-Classical Convolutional Neural Networks
    Fan, Fan
    Shi, Yilei
    Zhu, Xiao Xiang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 12477 - 12489
  • [28] Impact of Various Atmospheric Corrections on Sentinel-2 Land Cover Classification Accuracy Using Machine Learning Classifiers
    Rumora, Luka
    Miler, Mario
    Medak, Damir
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2020, 9 (04)
  • [29] Fully automatic multi-temporal land cover classification using Sentinel-2 image data
    Baamonde, Sergio
    Cabana, Martino
    Sillero, Neftali
    Penedo, Manuel G.
    Naveira, Horacio
    Novo, Jorge
    KNOWLEDGE-BASED AND INTELLIGENT INFORMATION & ENGINEERING SYSTEMS (KES 2019), 2019, 159 : 650 - 657
  • [30] The impact of selection of reference samples and DEM on the accuracy of land cover classification based on Sentinel-2 data
    Wasniewski, Adam
    Hoscilo, Agata
    Aune-Lundberg, Linda
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2023, 32