Machine-learning-based prediction and optimization of emerging contaminants' adsorption capacity on biochar materials

被引:77
|
作者
Jaffari, Zeeshan Haider [1 ]
Jeong, Heewon [1 ]
Shin, Jaegwan [2 ]
Kwak, Jinwoo [2 ]
Son, Changgil [2 ]
Lee, Yong-Gu [3 ]
Kim, Sangwon [2 ]
Chon, Kangmin [2 ,3 ]
Cho, Kyung Hwa [1 ,4 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Urban & Environm Engn, UNIST Gil 50, Ulsan 44919, South Korea
[2] Kangwon Natl Univ, Dept Integrated Energy & Infra Syst, Kangwondaehak Gil 1, Chuncheon Si 24341, Gangwon Do, South Korea
[3] Kangwon Natl Univ, Coll Engn, Dept Environm Engn, Kangwondaehak Gil 1, Chuncheon Si 24341, Gangwon Do, South Korea
[4] Ulsan Natl Inst Sci & Technol UNIST, Grad Sch Carbon Neutral, UNIST Gil 50, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
Machine learning; CatBoost; Adsorption; Emerging contaminants; Biochar; WASTE-WATER; SORPTION MECHANISMS; CARBON; IMPACT;
D O I
10.1016/j.cej.2023.143073
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biochar materials have recently received considerable recognition as eco-friendly and cost-effective adsorbents capable of effectively removing hazardous emerging contaminants (e.g., pharmaceuticals, herbicides, and fun-gicides) to aquatic organisms and human health accumulated in aquatic ecosystems. In this study, ten tree-based machine learning (ML) models, including bagging, CatBoost, ExtraTrees, HistGradientBoosting, XGBoost, Gra-dientBoosting, DecisionTree, Random Forest, Light gradient Boosting, and KNearest Neighbors, have been built to accurately predict the adsorption capacity of biochar materials toward ECs in aqueous solutions. A very large data set with 3,757 data points was generated using 24 input variables (i.e., pyrolysis conditions for biochar production (3 features), biochar characteristics (3 features), biochar compositions (6 features), and adsorption experimental conditions (12 features)) obtained from the batch adsorption experiments to remove 12 kinds of ECs using 18 different biochar materials. The rigorous evaluation and comparison of the ML model performances shows that CatBoost model had the highest test coefficient of determination (0.9433) and lowest mean absolute error (4.95 mg/g), outperformed clearly all other models. The feature importance analyzed by the shapley ad-ditive explanations (SHAP) indicated that the adsorption experimental conditions provided the highest impact on the model prediction for adsorption capacity (41 %) followed by the adsorbent composition (35 %), adsorbent characterization (20 %), and synthesis conditions (3)%). The optimized experimental conditions predicted by the modeling were a N/C ratio of 0.017, BET surface area of 1040 m(2)/g, content of C(%) contents of 82.1 %, pore volume of 0.46 cm(3)/g, initial ECs concentration of 100 mg/L, type of pollutant (CAR), adsorption type (Single) and adsorption contact time (720 min).
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Adsorption Capacity Prediction and Optimization of Electrospun Nanofiber Membranes for Estrogenic Hormone Removal Using Machine Learning Algorithms
    Yasir, Muhammad
    Ul Haq, Hamza
    Khan, Muhammad Nouman Aslam
    Gul, Jawad
    Zubair, Mukarram
    Sedlarik, Vladimir
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2024, 35 (11)
  • [32] Machine-Learning-Based Suitability Prediction for Mobile Applications for Kids
    Meng, Xianjun
    Li, Shaomei
    Malik, Muhammad Mohsin
    Umer, Qasim
    SUSTAINABILITY, 2022, 14 (19)
  • [33] Optimising Machine-Learning-Based Fault Prediction in Foundry Production
    Santos, Igor
    Nieves, Javier
    Penya, Yoseba K.
    Bringas, Pablo G.
    DISTRIBUTED COMPUTING, ARTIFICIAL INTELLIGENCE, BIOINFORMATICS, SOFT COMPUTING, AND AMBIENT ASSISTED LIVING, PT II, PROCEEDINGS, 2009, 5518 : 554 - 561
  • [34] Machine-learning-based Dynamic IR Drop Prediction for ECO
    Fang, Yen-Chun
    Lin, Heng-Yi
    Su, Min-Yan
    Li, Chien-Mo
    Fang, Eric Jia-Wei
    2018 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN (ICCAD) DIGEST OF TECHNICAL PAPERS, 2018,
  • [35] Machine learning prediction of specific capacitance in biomass derived carbon materials: Effects of activation and biochar characteristics
    Yang, Xuping
    Yuan, Chuan
    He, Sirong
    Jiang, Ding
    Cao, Bin
    Wang, Shuang
    FUEL, 2023, 331
  • [36] Machine-Learning-Based Optimization Method for Wideband Metasurface Antenna
    Liu, Peiqin
    Shan, Zijue
    Chen, Zhi Ning
    2023 17TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP, 2023,
  • [37] Supervised machine learning-based categorization and prediction of uranium adsorption capacity on various process parameters
    Pamungkas, Niken Siwi
    Putra, Zico Pratama
    Pratama, Hendra Adhi
    Yusuf, Muhammad
    JOURNAL OF HAZARDOUS MATERIALS ADVANCES, 2025, 17
  • [38] Ball-milling synthesis of biochar and biochar-based nanocomposites and prospects for removal of emerging contaminants: A review
    Amusat, Sefiu Olaitan
    Kebede, Temesgen Girma
    Dube, Simiso
    Nindi, Mathew Muzi
    JOURNAL OF WATER PROCESS ENGINEERING, 2021, 41
  • [39] Machine learning prediction of higher heating value of biochar based on biomass characteristics and pyrolysis conditions
    Wang, Minghong
    Xie, Yingpu
    Gao, Yong
    Huang, Xiaohong
    Wei, Chen
    BIORESOURCE TECHNOLOGY, 2024, 395
  • [40] A novel elemental composition based prediction model for biochar aromaticity derived from machine learning
    Cao, Hongliang
    Milan, Yaime Jefferson
    Mood, Sohrab Haghighi
    Ayiania, Michael
    Zhang, Shu
    Gong, Xuzhong
    Lora, Electo Eduardo Silva
    Yuan, Qiaoxia
    Garcia-Perez, Manuel
    ARTIFICIAL INTELLIGENCE IN AGRICULTURE, 2021, 5 : 133 - 141