Machine-learning-based prediction and optimization of emerging contaminants' adsorption capacity on biochar materials

被引:77
|
作者
Jaffari, Zeeshan Haider [1 ]
Jeong, Heewon [1 ]
Shin, Jaegwan [2 ]
Kwak, Jinwoo [2 ]
Son, Changgil [2 ]
Lee, Yong-Gu [3 ]
Kim, Sangwon [2 ]
Chon, Kangmin [2 ,3 ]
Cho, Kyung Hwa [1 ,4 ]
机构
[1] Ulsan Natl Inst Sci & Technol UNIST, Sch Urban & Environm Engn, UNIST Gil 50, Ulsan 44919, South Korea
[2] Kangwon Natl Univ, Dept Integrated Energy & Infra Syst, Kangwondaehak Gil 1, Chuncheon Si 24341, Gangwon Do, South Korea
[3] Kangwon Natl Univ, Coll Engn, Dept Environm Engn, Kangwondaehak Gil 1, Chuncheon Si 24341, Gangwon Do, South Korea
[4] Ulsan Natl Inst Sci & Technol UNIST, Grad Sch Carbon Neutral, UNIST Gil 50, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
Machine learning; CatBoost; Adsorption; Emerging contaminants; Biochar; WASTE-WATER; SORPTION MECHANISMS; CARBON; IMPACT;
D O I
10.1016/j.cej.2023.143073
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biochar materials have recently received considerable recognition as eco-friendly and cost-effective adsorbents capable of effectively removing hazardous emerging contaminants (e.g., pharmaceuticals, herbicides, and fun-gicides) to aquatic organisms and human health accumulated in aquatic ecosystems. In this study, ten tree-based machine learning (ML) models, including bagging, CatBoost, ExtraTrees, HistGradientBoosting, XGBoost, Gra-dientBoosting, DecisionTree, Random Forest, Light gradient Boosting, and KNearest Neighbors, have been built to accurately predict the adsorption capacity of biochar materials toward ECs in aqueous solutions. A very large data set with 3,757 data points was generated using 24 input variables (i.e., pyrolysis conditions for biochar production (3 features), biochar characteristics (3 features), biochar compositions (6 features), and adsorption experimental conditions (12 features)) obtained from the batch adsorption experiments to remove 12 kinds of ECs using 18 different biochar materials. The rigorous evaluation and comparison of the ML model performances shows that CatBoost model had the highest test coefficient of determination (0.9433) and lowest mean absolute error (4.95 mg/g), outperformed clearly all other models. The feature importance analyzed by the shapley ad-ditive explanations (SHAP) indicated that the adsorption experimental conditions provided the highest impact on the model prediction for adsorption capacity (41 %) followed by the adsorbent composition (35 %), adsorbent characterization (20 %), and synthesis conditions (3)%). The optimized experimental conditions predicted by the modeling were a N/C ratio of 0.017, BET surface area of 1040 m(2)/g, content of C(%) contents of 82.1 %, pore volume of 0.46 cm(3)/g, initial ECs concentration of 100 mg/L, type of pollutant (CAR), adsorption type (Single) and adsorption contact time (720 min).
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Machine learning prediction of dye adsorption by hydrochar: Parameter optimization and experimental validation
    Liu, Chong
    Balasubramanian, Paramasivan
    Li, Fayong
    Huang, Haiming
    JOURNAL OF HAZARDOUS MATERIALS, 2024, 480
  • [22] An exploration on the machine-learning-based stroke prediction model
    Zhi, Shenshen
    Hu, Xiefei
    Ding, Yan
    Chen, Huajian
    Li, Xun
    Tao, Yang
    Li, Wei
    FRONTIERS IN NEUROLOGY, 2024, 15
  • [23] Machine-Learning-Based Design Optimization of Chassis Bushings
    Toepel, Eric
    Fuchs, Alexander
    Buettner, Kay
    Kaliske, Michael
    Prokop, Gunther
    VEHICLES, 2024, 6 (01): : 1 - 21
  • [24] Advances in Chitosan-Based Materials for Application in Catalysis and Adsorption of Emerging Contaminants
    Goncalves, Janaina Oliveira
    de Farias, Bruna Silva
    Rios, Estefani Cardillo
    Jaeschke, Debora Pez
    Ribeiro, Anelise Christ
    da Silva, Mariele Dalmolin
    Vieira, Mery Luiza Garcia
    Carvalho, Valeria Vieira de Lima
    Cadaval Jr, Tito Roberto Santanna
    Pinto, Luiz Antonio de Almeida
    SUSTAINABILITY, 2024, 16 (19)
  • [25] Machine learning prediction of biochar yield based on biomass characteristics
    Ma, Jingjing
    Zhang, Shuai
    Liu, Xiangjun
    Wang, Junqi
    BIORESOURCE TECHNOLOGY, 2023, 389
  • [26] Machine learning approach to predict adsorption capacity of Fe-modified biochar for selenium
    Ullah H.
    Khan S.
    Chen B.
    Shahab A.
    Riaz L.
    Lun L.
    Wu N.
    Carbon Research, 2023, 2 (01):
  • [27] Prediction of asphaltene adsorption capacity of clay minerals using machine learning
    Ghasemi, Mehdi
    Tatar, Afshin
    Shafiei, Ali
    Ivakhnenko, Oleksandr P.
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 101 (05) : 2579 - 2597
  • [28] Machine learning-based prediction and experimental validation of heavy metal adsorption capacity of bentonite
    Guo, Lisheng
    Xu, Xin
    Niu, Cencen
    Wang, Qing
    Park, Junboum
    Zhou, Lu
    Lei, Haomin
    Wang, Xinhai
    Yuan, Xiaoqing
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 926
  • [29] Applied machine learning to the determination of biochar hydrogen sulfide adsorption capacity
    Banisheikholeslami, Abolhassan
    Qaderi, Farhad
    MACHINE LEARNING, 2024, 113 (06) : 3419 - 3441
  • [30] Applied machine learning to the determination of biochar hydrogen sulfide adsorption capacity
    Abolhassan Banisheikholeslami
    Farhad Qaderi
    Machine Learning, 2024, 113 : 3419 - 3441