Generalized Hilbert operators acting on weighted Bergman spaces and Dirichlet spaces

被引:3
|
作者
Ye, Shanli [1 ]
Feng, Guanghao [1 ]
机构
[1] Zhejiang Univ Sci & Technol, Sch Sci, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
Generalized Hilbert operators; Weighted Bergman spaces; Dirichlet spaces; Carleson measure; HARDY;
D O I
10.1007/s43037-023-00268-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let mu be a positive Borel measure on the interval [0, 1). For beta > 0, the generalized Hankel matrix H-mu,H-beta = (mu(n),k,beta)n,k >= 0 with entries mu(n,k,beta) = integral([0.1)) Gamma(n+beta)\n!Gamma(beta) t(n+k)d(mu)(t) induces formally the operator H-mu,H-beta(f) (z) = Sigma(infinity)(n=0) (Sigma(infinity)(k=0) mu(n,k,beta)a(k))z(n), on the space of all analytic function f (z) = Sigma(infinity)(k=0) a(k)z(n) in the unit disk D. In this paper, we characterize those positive Borel measures on [0, 1) such thatH(mu,beta)(f ) (z) =integral([0,1)) f(t)\(1-tz)(beta)d mu(t) for all f in the weighted Bergman spaces A(alpha)(p) (0 < p < infinity, alpha > -1), and among them, we describe those for which H-mu,H-beta (beta > 0) is a bounded (resp., compact) operator on weighted Bergman spaces A(p)(alpha) and Dirichlet spaces D-p(alpha).
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Generalized Hilbert operators acting on weighted Bergman spaces and Dirichlet spaces
    Shanli Ye
    Guanghao Feng
    Banach Journal of Mathematical Analysis, 2023, 17
  • [2] Generalized Hilbert operators on weighted Bergman spaces
    Angel Pelaez, Jose
    Rattya, Jouni
    ADVANCES IN MATHEMATICS, 2013, 240 : 227 - 267
  • [3] Generalized Hilbert matrix operators acting on Bergman spaces
    Bellavita, C.
    Daskalogiannis, V
    Miihkinen, S.
    Norrbo, D.
    Stylogiannis, G.
    Virtanen, J.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2025, 288 (09)
  • [4] Weighted composition operators on weighted Bergman and Dirichlet spaces
    Esmaeili, Kobra
    Kellay, Karim
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2023, 66 (01): : 286 - 302
  • [5] Generalized Counting Functions and Composition Operators on Weighted Bergman Spaces of Dirichlet Series
    He, Min
    Wang, Maofa
    Chen, Jiale
    ACTA MATHEMATICA SCIENTIA, 2025, 45 (02) : 291 - 309
  • [6] Hilbert-Type Operators Acting on Bergman Spaces
    Aguilar-Hernandez, Tanausu
    Galanopoulos, Petros
    Girela, Daniel
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2024,
  • [7] Composition operators on weighted Bergman spaces of Dirichlet series
    Bailleul, Maxime
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 426 (01) : 340 - 363
  • [8] Composition operators acting on weighted Dirichlet spaces
    Pau, Jordi
    Perez, Patricio A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 401 (02) : 682 - 694
  • [9] GENERALIZED WEIGHTED COMPOSITION OPERATORS ON WEIGHTED BERGMAN SPACES
    Zhu, Xiangling
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2009, 30 (7-8) : 881 - 893
  • [10] Toeplitz operators on harmonically weighted Bergman spaces and applications to composition operators on Dirichlet spaces
    El-Fallah, Omar
    Mahzouli, Houssame
    Marrhich, Ibrahim
    Naqos, Hatim
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (01) : 471 - 489