Influence of longitudinal wind on thermal runaway and fire behaviors of 18650 lithium-ion batteries in a restricted channel

被引:20
|
作者
Wang, Zhi [1 ,2 ]
Zhao, Qingjie [1 ]
Yin, Bo [1 ]
Shi, Bobo [1 ]
Wang, Jian [3 ]
An, Weiguang [1 ,2 ]
机构
[1] China Univ Min & Technol, Inst Publ Safety & Fire Protect, Sch Safety Engn, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Jiangsu Key Lab Fire Safety Urban Underground Spac, Xuzhou 221116, Jiangsu, Peoples R China
[3] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium -ion battery; Thermal runaway; Longitudinal wind; Alleviation effect; Hazard control; FAILURE; HAZARDS; CELLS; MECHANISMS;
D O I
10.1016/j.jpowsour.2023.232974
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thermal runaway (TR) is an essential issue puzzling the application of lithium-ion batteries, while there is a knowledge gap about TR characteristics of batteries under varied wind velocities. This study employed an experimental approach to investigate the influence of longitudinal wind velocity on TR behaviors of batteries in a restricted channel. The results indicate that the key parameters of TR are significantly affected by wind veloc-ities. The onset time of safety valve opening, TR occurring, and maximum surface temperature appearing rises exponentially over wind velocity. Whereas the onset temperature of the first two decreases linearly with wind velocity. Temperature rising rates at different stages also tend to change similarly. The maximum surface tem-perature and temperature rise rate have no visible correlation with wind velocity. A simplified thermal balance analysis method was proposed to dissect the wind velocity effect during TR. Three regions for TR can be divided based on the critical wind velocity of 3.5 m/s and 4.5 m/s. The maximum temperature difference in the channel corresponds to the flow state depending on wind velocity. This work can enhance our knowledge of the longi-tudinal wind impact on TR and provide a new viewpoint to preventing TR and its propagation.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Jet behavior of prismatic lithium-ion batteries during thermal runaway
    Zou, Kaiyu
    Chen, Xiao
    Ding, Zhiwei
    Gu, Jia
    Lu, Shouxiang
    APPLIED THERMAL ENGINEERING, 2020, 179
  • [32] Mitigating Thermal Runaway of Lithium-Ion Batteries
    Feng, Xuning
    Ren, Dongsheng
    He, Xiangming
    Ouyang, Minggao
    JOULE, 2020, 4 (04) : 743 - 770
  • [33] Thermal runaway suppression effect of water mist on 18650-cylinder lithium-ion batteries with different cathode materials
    Liu, Xiaozhao
    Xu, Dengji
    Meng, Xiaokai
    Lu, Zhumao
    Chen, Yanjun
    Liu, Changcheng
    Huang, Que
    CASE STUDIES IN THERMAL ENGINEERING, 2022, 35
  • [34] Modeling thermal runaway propagation of lithium-ion batteries under impacts of ceiling jet fire
    Wang, Gongquan
    Ping, Ping
    Zhang, Yue
    Zhao, Hengle
    Lv, Hongpeng
    Gao, Xinzeng
    Gao, Wei
    Kong, Depeng
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 175 : 524 - 540
  • [35] Numerical simulation of initial gas-jet fire evolution under thermal runaway of lithium-ion batteries
    Wang, Shuai
    Wang, Guanqing
    Ma, Dongwei
    Chen, Xiangxiang
    Zheng, Guanghua
    Xu, Jiangrong
    JOURNAL OF ENERGY STORAGE, 2025, 114
  • [36] Insights into extreme thermal runaway scenarios of lithium-ion batteries fire and explosion: A critical review
    Shan, Tongxin
    Zhang, Puchen
    Wang, Zhenpo
    Zhu, Xiaoqing
    JOURNAL OF ENERGY STORAGE, 2024, 88
  • [37] A review on thermal runaway warning technology for lithium-ion batteries
    Hu, Dunan
    Huang, Sheng
    Wen, Zhen
    Gu, Xiuquan
    Lu, Jianguo
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 206
  • [38] Influence of Aerogel Felt with Different Thickness on Thermal Runaway Propagation of 18650 Lithium-ion Battery
    Liu, Quanyi
    Zhu, Qian
    Zhu, Wentian
    Yi, Xiaoying
    ELECTROCHEMISTRY, 2022, 90 (08)
  • [39] Thermal Runaway Behaviors and Kinetics of NCM Lithium-Ion Batteries at Different Heat Dissipation Conditions
    Guo, Qianzhen
    Zhang, Jiabo
    Zhou, Chao
    Huang, Zhen
    Han, Dong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (08)
  • [40] Applied method to model the thermal runaway of lithium-ion batteries
    Lalinde, Inaki
    Berrueta, Alberto
    Sanchis, Pablo
    Ursua, Alfredo
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON ENVIRONMENT AND ELECTRICAL ENGINEERING AND 2021 5TH IEEE INDUSTRIAL AND COMMERCIAL POWER SYSTEMS EUROPE (EEEIC/I&CPS EUROPE), 2021,