Mechanical Characterization of 3D-Printed Patterned Membranes for Cardiac Tissue Engineering: An Experimental and Numerical Study

被引:4
|
作者
Poerio, Aurelia [1 ]
Guibert, Bertrand [1 ]
Leroux, Melanie M. [1 ]
Mano, Joao F. [2 ]
Cleymand, Franck [1 ]
Jehl, Jean-Philippe [1 ]
机构
[1] Univ Lorraine, Inst Jean Lamour, UMR 7198, CNRS, F-54011 Nancy, France
[2] Univ Aveiro, Aveiro Inst Mat, Dept Chem, CICECO, P-3810193 Aveiro, Portugal
关键词
biomaterials; cardiac membrane; tissue engineering; 3D bioprinting; mechanical behavior; numerical simulation; HEART-FAILURE; HYDROGELS;
D O I
10.3390/biomedicines11030963
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A myocardial infarction can cause irreversible damage to the heart muscle. A promising approach for the treatment of myocardial infarction and prevention of severe complications is the application of cardiac patches or epicardial restraint devices. The challenge for the fabrication of cardiac patches is the replication of the fibrillar structure of the myocardium, in particular its anisotropy and local elasticity. In this study, we developed a chitosan-gelatin-guar gum-based biomaterial ink that was fabricated using 3D printing to create patterned anisotropic membranes. The experimental results were then used to develop a numerical model able to predict the elastic properties of additional geometries with tunable elasticity that could easily match the mechanical properties of the heart tissue (particularly the myocardium).
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Acoustic and mechanical characterization of 3D-printed scaffolds for tissue engineering applications
    Aliabouzar, Mitra
    Zhang, Grace Lijie
    Sarkar, Kausik
    BIOMEDICAL MATERIALS, 2018, 13 (05)
  • [2] Experimental and Numerical Simulations of 3D-Printed Polycaprolactone Scaffolds for Bone Tissue Engineering Applications
    Xu, Zhanyan
    Omar, Abdalla M.
    Bartolo, Paulo
    MATERIALS, 2021, 14 (13)
  • [3] Numerical and experimental study of echogenicity in 3D-printed tissue-mimicking materials
    Kamalinia, Hossein
    Bonnevay, Merlin
    Barbarulo, Andrea
    Vennat, Elsa
    Tie, Bing
    ULTRASONICS, 2025, 148
  • [4] Design, Experimental and Numerical Characterization of 3D-Printed Porous Absorbers
    Ring, Tobias P.
    Langer, Sabine C.
    MATERIALS, 2019, 12 (20)
  • [5] 3D-Printed Biopolymers for Tissue Engineering Application
    Li, Xiaoming
    Cui, Rongrong
    Sun, Lianwen
    Aifantis, Katerina E.
    Fan, Yubo
    Feng, Qingling
    Cui, Fuzhai
    Watari, Fumio
    INTERNATIONAL JOURNAL OF POLYMER SCIENCE, 2014, 2014
  • [6] On the progress of 3D-printed hydrogels for tissue engineering
    Advincula, Rigoberto C.
    Dizon, John Ryan C.
    Caldona, Eugene B.
    Viers, Robert Andrew
    Siacor, Francis Dave C.
    Maalihan, Reymark D.
    Espera, Alejandro H., Jr.
    MRS COMMUNICATIONS, 2021, 11 (05) : 539 - 553
  • [7] On the progress of 3D-printed hydrogels for tissue engineering
    Rigoberto C. Advincula
    John Ryan C. Dizon
    Eugene B. Caldona
    Robert Andrew Viers
    Francis Dave C. Siacor
    Reymark D. Maalihan
    Alejandro H. Espera
    MRS Communications, 2021, 11 : 539 - 553
  • [8] Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts
    Cantrell, Jason T.
    Rohde, Sean
    Damiani, David
    Gurnani, Rishi
    DiSandro, Luke
    Anton, Josh
    Young, Andie
    Jerez, Alex
    Steinbach, Douglas
    Kroese, Calvin
    Ifju, Peter G.
    RAPID PROTOTYPING JOURNAL, 2017, 23 (04) : 811 - 824
  • [9] O Mechanical characterization of 3D-printed polymers
    Dizon, John Ryan C.
    Espera, Alejandro H., Jr.
    Chen, Qiyi
    Advincula, Rigoberto C.
    ADDITIVE MANUFACTURING, 2018, 20 : 44 - 67
  • [10] 3D-printed tubular scaffolds for vascular tissue engineering
    Rabionet, Marc
    Jesus Guerra, Antonio
    Puig, Teresa
    Ciurana, Joaquim
    19TH CIRP CONFERENCE ON ELECTRO PHYSICAL AND CHEMICAL MACHINING, 2018, 68 : 352 - 357