Fractional Order Runge-Kutta Methods

被引:7
作者
Ghoreishi, Farideh [1 ]
Ghaffari, Rezvan [1 ]
Saad, Nasser [2 ]
机构
[1] KN Toosi Univ Technol, Dept Math, POB 16765-3381, Tehran, Iran
[2] Univ Prince Edward Isl, Sch Math & Computat Sci, Charlottetown, PE C1A 4P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
fractional differential equations; Caputo fractional derivative; convergence analysis; consistency; stability analysis; PARTIAL-DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; INTEGRAL-EQUATIONS; VOLTERRA;
D O I
10.3390/fractalfract7030245
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a new class of fractional order Runge-Kutta (FORK) methods for numerically approximating the solution of fractional differential equations (FDEs). We construct explicit and implicit FORK methods for FDEs by using the Caputo generalized Taylor series formula. Due to the dependence of fractional derivatives on a fixed base point, in the proposed method, we had to modify the right-hand side of the given equation in all steps of the FORK methods. Some coefficients for explicit and implicit FORK schemes are presented. The convergence analysis of the proposed method is also discussed. Numerical experiments are presented to clarify the effectiveness and robustness of the method.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Diagonally implicit trigonometrically fitted symplectic Runge-Kutta methods
    Kalogiratou, Z.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7406 - 7412
  • [42] A new code for Volterra integral equations based on natural Runge-Kutta methods
    Abdi, A.
    Hojjati, G.
    Jackiewicz, Z.
    Mahdi, H.
    APPLIED NUMERICAL MATHEMATICS, 2019, 143 : 35 - 50
  • [43] Two-Derivative Runge-Kutta Methods for Differential Equations
    Chan, Robert P. K.
    Wang, Shixiao
    Tsai, Angela Y. J.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 262 - 266
  • [44] Dissipativity of Runge-Kutta methods for Volterra functional differential equations
    Wen, Liping
    Yu, Yuexin
    Li, Shoufu
    APPLIED NUMERICAL MATHEMATICS, 2011, 61 (03) : 368 - 381
  • [45] Highly stable implicit-explicit Runge-Kutta methods
    Izzo, Giuseppe
    Jackiewicz, Zdzislaw
    APPLIED NUMERICAL MATHEMATICS, 2017, 113 : 71 - 92
  • [46] A family of trigonometrically fitted partitioned Runge-Kutta symplectic methods
    Monovasilis, Th.
    Kalogiratou, Z.
    Simos, T. E.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 209 (01) : 91 - 96
  • [47] STOCHASTIC RUNGE-KUTTA METHODS FOR ITO SODEs WITH SMALL NOISE
    Buckwar, Evelyn
    Roessler, Andreas
    Winkler, Renate
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (04) : 1789 - 1808
  • [48] Invariants preserving schemes based on explicit Runge-Kutta methods
    Kojima, H.
    BIT NUMERICAL MATHEMATICS, 2016, 56 (04) : 1317 - 1337
  • [49] Application of the Euler and Runge-Kutta Generalized Methods for FDE and Symbolic Packages in the Analysis of Some Fractional Attractors
    Milici, Constantin
    Machado, Jose Tenreiro
    Draganescu, Gheorghe
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2020, 21 (02) : 159 - 170
  • [50] A Sixth Order Symmetric and Symplectic Diagonally Implicit Runge-Kutta Method
    Kalogiratou, Z.
    Monovasilis, Th
    Simos, T. E.
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 833 - 838