Fractional Order Runge-Kutta Methods

被引:7
作者
Ghoreishi, Farideh [1 ]
Ghaffari, Rezvan [1 ]
Saad, Nasser [2 ]
机构
[1] KN Toosi Univ Technol, Dept Math, POB 16765-3381, Tehran, Iran
[2] Univ Prince Edward Isl, Sch Math & Computat Sci, Charlottetown, PE C1A 4P3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
fractional differential equations; Caputo fractional derivative; convergence analysis; consistency; stability analysis; PARTIAL-DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; INTEGRAL-EQUATIONS; VOLTERRA;
D O I
10.3390/fractalfract7030245
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents a new class of fractional order Runge-Kutta (FORK) methods for numerically approximating the solution of fractional differential equations (FDEs). We construct explicit and implicit FORK methods for FDEs by using the Caputo generalized Taylor series formula. Due to the dependence of fractional derivatives on a fixed base point, in the proposed method, we had to modify the right-hand side of the given equation in all steps of the FORK methods. Some coefficients for explicit and implicit FORK schemes are presented. The convergence analysis of the proposed method is also discussed. Numerical experiments are presented to clarify the effectiveness and robustness of the method.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Order conditions for Volterra Runge-Kutta methods
    Garrappa, Roberto
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (05) : 561 - 573
  • [2] Natural Volterra Runge-Kutta methods
    Conte, Dajana
    D'Ambrosio, Raffaele
    Izzo, Giuseppe
    Jackiewicz, Zdzislaw
    NUMERICAL ALGORITHMS, 2014, 65 (03) : 421 - 445
  • [3] LINEARLY-IMPLICIT RUNGE-KUTTA METHODS BASED ON IMPLICIT RUNGE-KUTTA METHODS
    BRUDER, J
    APPLIED NUMERICAL MATHEMATICS, 1993, 13 (1-3) : 33 - 40
  • [4] HIGH ORDER CONTRACTIVE RUNGE-KUTTA METHODS FOR VOLTERRA FUNCTIONAL DIFFERENTIAL EQUATIONS
    Li, Shoufu
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 47 (06) : 4290 - 4325
  • [5] Modified Fractional Runge-Kutta Method for Solving Fuzzy Differential Equations of Fractional Order
    Narayanamoorthy, S.
    Thangapandi, K.
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2020, 43 (04): : 355 - 359
  • [6] Natural Volterra Runge-Kutta methods
    Dajana Conte
    Raffaele D’Ambrosio
    Giuseppe Izzo
    Zdzislaw Jackiewicz
    Numerical Algorithms, 2014, 65 : 421 - 445
  • [7] On the Consistency Order of Runge-Kutta Methods Combined with Active Richardson Extrapolation
    Bayleyegn, Teshome
    Farago, Istvan
    Havasi, Agnes
    LARGE-SCALE SCIENTIFIC COMPUTING (LSSC 2021), 2022, 13127 : 101 - 108
  • [8] Impulsive Discrete Runge-Kutta Methods and Impulsive Continuous Runge-Kutta Methods for Nonlinear Differential Equations with Delayed Impulses
    Zhang, Gui-Lai
    Zhu, Zhi-Yong
    Wang, Yu-Chen
    Liu, Chao
    MATHEMATICS, 2024, 12 (19)
  • [9] RUNGE-KUTTA METHODS FOR PARTIAL-DIFFERENTIAL EQUATIONS AND FRACTIONAL ORDERS OF CONVERGENCE
    OSTERMANN, A
    ROCHE, M
    MATHEMATICS OF COMPUTATION, 1992, 59 (200) : 403 - 420
  • [10] 2-STEP RUNGE-KUTTA METHODS
    JACKIEWICZ, Z
    RENAUT, R
    FELDSTEIN, A
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) : 1165 - 1182