Diversity entropy-based Bayesian deep learning method for uncertainty quantification of remaining useful life prediction in rolling bearings

被引:6
|
作者
Bai, Rui [1 ]
Li, Yongbo [1 ]
Noman, Khandaker [1 ]
Wang, Shun [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Diversity entropy-based bayesian deep learning; remaining useful life prediction; uncertainty quantification; start degradation time; rolling bearings; FAULT-DIAGNOSIS; PROGNOSTICS;
D O I
10.1177/10775463221129930
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Remaining useful life (RUL) prediction of rolling bearings plays a critical role in reducing unplanned downtime and improving machine productivity. The existing prediction methods primarily provide point estimates of RUL without quantifying uncertainty. However, uncertainty quantification of RUL is crucial to conduct reliable risk analysis and make maintenance decision, which can significantly decrease the maintenance costs. To solve the uncertainty quantification problem and improve prediction accuracy at the same time, a novel diversity entropy-based Bayesian deep learning (DE-BDL) method is proposed. First, start degradation time (SDT) of bearings is adaptively determined using diversity entropy, which can extract early degradation information. Then, multi-scale diversity entropy (MDE) is developed to extract dynamic characteristics over multiple scales. Third, the obtained features using MDE are fed into the BDL model for degradation tracking and prediction. By doing this, the proposed DE-BDL method has merits in subsequent decision making, which can not only provide point estimation but also offer uncertainty quantification with epistemic uncertainty and aleatoric uncertainty. The superiority of the proposed method is validated using run-to-failure data. The experimental results and comparison with state-of-art prediction methods have demonstrated that the proposed DE-BDL method is promising for RUL of rolling bearings.
引用
收藏
页码:5053 / 5066
页数:14
相关论文
共 50 条
  • [41] Remaining Useful Life Prediction of Rolling Element Bearings Based on Hybrid Drive of Data and Model
    Wang, Xin
    Cui, Lingli
    Wang, Huaqing
    IEEE SENSORS JOURNAL, 2022, 22 (17) : 16985 - 16993
  • [42] Multivariate Phase Space Warping-Based Degradation Tracking and Remaining Useful Life Prediction of Rolling Bearings
    Liu, Hengyu
    Yuan, Rui
    Lv, Yong
    Yang, Xingkai
    Li, Hewenxuan
    Gedikli, Ersegun Deniz
    IEEE TRANSACTIONS ON RELIABILITY, 2024, 73 (03) : 1592 - 1605
  • [43] Remaining Useful Life Prediction of Rolling Bearings Based on Segmented Relative Phase Space Warping and Particle Filter
    Liu, Hengyu
    Yuan, Rui
    Lv, Yong
    Li, Hewenxuan
    Gedikli, Ersegun Deniz
    Song, Gangbing
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [44] Remaining Useful Life prediction of rolling bearings based on risk assessment and degradation state coefficient
    Li, Qiang
    Yan, Changfeng
    Chen, Guangyi
    Wang, Huibin
    Li, Hongkun
    Wu, Lixiao
    ISA TRANSACTIONS, 2022, 129 : 413 - 428
  • [45] Remaining useful life prediction of rolling element bearings based on simulated performance degradation dictionary
    Cui, Lingli
    Wang, Xin
    Wang, Huaqing
    Jiang, Hong
    MECHANISM AND MACHINE THEORY, 2020, 153
  • [46] Remaining useful life prediction of rolling bearings based on time convolutional network and transformer in parallel
    Tang, Youfu
    Liu, Ruifeng
    Li, Chunhui
    Lei, Na
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [47] Remaining useful life prediction of the aircraft engine and its uncertainty quantification based on ConvJANET
    Miao Y.
    Li C.
    Shi H.
    Lin J.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2023, 53 (07): : 1189 - 1201
  • [48] A Novel Robust Dual Unscented Particle Filter Method for Remaining Useful Life Prediction of Rolling Bearings
    Cui, Lingli
    Li, Wenjie
    Liu, Dongdong
    Wang, Huaqing
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 9
  • [49] A Framework for Predicting Remaining Useful Life Curve of Rolling Bearings Under Defect Progression Based on Neural Network and Bayesian Method
    Kitai, Masashi
    Kobayashi, Takuji
    Fujiwara, Hiroki
    Tani, Ryoji
    Numao, Masayuki
    Fukui, Ken-Ichi
    IEEE ACCESS, 2021, 9 : 62642 - 62652
  • [50] Remaining Useful Life Prediction Model for Rolling Bearings Based on MFPE-MACNN
    Wang, Yaping
    Wang, Jinbao
    Zhang, Sheng
    Xu, Di
    Ge, Jianghua
    ENTROPY, 2022, 24 (07)