Diversity entropy-based Bayesian deep learning method for uncertainty quantification of remaining useful life prediction in rolling bearings

被引:6
|
作者
Bai, Rui [1 ]
Li, Yongbo [1 ]
Noman, Khandaker [1 ]
Wang, Shun [1 ]
机构
[1] Northwestern Polytech Univ, Sch Aeronaut, Xian 710072, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Diversity entropy-based bayesian deep learning; remaining useful life prediction; uncertainty quantification; start degradation time; rolling bearings; FAULT-DIAGNOSIS; PROGNOSTICS;
D O I
10.1177/10775463221129930
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Remaining useful life (RUL) prediction of rolling bearings plays a critical role in reducing unplanned downtime and improving machine productivity. The existing prediction methods primarily provide point estimates of RUL without quantifying uncertainty. However, uncertainty quantification of RUL is crucial to conduct reliable risk analysis and make maintenance decision, which can significantly decrease the maintenance costs. To solve the uncertainty quantification problem and improve prediction accuracy at the same time, a novel diversity entropy-based Bayesian deep learning (DE-BDL) method is proposed. First, start degradation time (SDT) of bearings is adaptively determined using diversity entropy, which can extract early degradation information. Then, multi-scale diversity entropy (MDE) is developed to extract dynamic characteristics over multiple scales. Third, the obtained features using MDE are fed into the BDL model for degradation tracking and prediction. By doing this, the proposed DE-BDL method has merits in subsequent decision making, which can not only provide point estimation but also offer uncertainty quantification with epistemic uncertainty and aleatoric uncertainty. The superiority of the proposed method is validated using run-to-failure data. The experimental results and comparison with state-of-art prediction methods have demonstrated that the proposed DE-BDL method is promising for RUL of rolling bearings.
引用
收藏
页码:5053 / 5066
页数:14
相关论文
共 50 条
  • [1] A Method for Remaining Useful Life Prediction and Uncertainty Quantification of Rolling Bearings Based on Fault Feature Gain
    Yang, Ningning
    Zhang, Wei
    Zhang, Jingqi
    Wang, Ke
    Su, Yin
    Liu, Yunpeng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [2] Remaining useful life prediction of rolling bearings based on Bayesian neural network and uncertainty quantification
    Jiang, Guang-Jun
    Yang, Jin-Sen
    Cheng, Tian-Cai
    Sun, Hong-Hua
    QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2023, 39 (05) : 1756 - 1774
  • [3] A Remaining Useful Life Prediction Method of Rolling Bearings Based on Deep Reinforcement Learning
    Zheng, Guokang
    Li, Yasong
    Zhou, Zheng
    Yan, Ruqiang
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (13): : 22938 - 22949
  • [4] Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification
    Yang, Jinsong
    Peng, Yizhen
    Xie, Jingsong
    Wang, Pengxi
    SENSORS, 2022, 22 (12)
  • [5] Uncertainty Measurement of the Prediction of the Remaining Useful Life of Rolling Bearings
    Sun, Hongchun
    Wu, Chenchen
    Lei, Zunyang
    JOURNAL OF NONDESTRUCTIVE EVALUATION, DIAGNOSTICS AND PROGNOSTICS OF ENGINEERING SYSTEMS, 2022, 5 (03):
  • [6] Remaining useful life prediction for rolling bearings based on RVM-Hausdorff distance
    Xu, Peihua
    Tu, Zhaoyu
    Li, Menghui
    Wang, Jun
    Wang, Xian-Bo
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (12)
  • [7] A Synthetic Feature Processing Method for Remaining Useful Life Prediction of Rolling Bearings
    Mi, Jinhua
    Liu, Lulu
    Zhuang, Yonghao
    Bai, Libing
    Li, Yan-Feng
    IEEE TRANSACTIONS ON RELIABILITY, 2023, 72 (01) : 125 - 136
  • [8] A Deep Learning-Based Remaining Useful Life Prediction Approach for Bearings
    Cheng, Cheng
    Ma, Guijun
    Zhang, Yong
    Sun, Mingyang
    Teng, Fei
    Ding, Han
    Yuan, Ye
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2020, 25 (03) : 1243 - 1254
  • [9] Remaining Useful Life Prediction for Rolling Bearings With a Novel Entropy-Based Health Indicator and Improved Particle Filter Algorithm
    Zhang, Tianyu
    Wang, Qingfeng
    Shu, Yue
    Xiao, Wang
    Ma, Wensheng
    IEEE ACCESS, 2023, 11 : 3062 - 3079
  • [10] Remaining Useful Life Prediction with Uncertainty Quantification Using Evidential Deep Learning
    Ben Ayed, Safa
    Broujeny, Roozbeh Sadeghian
    Hamza, Rachid Tahar
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2025, 15 (01) : 37 - 55