Adversarial Spectral Super-Resolution for Multispectral Imagery Using Spatial Spectral Feature Attention Module

被引:1
作者
Liu, Ziyu [1 ]
Zhu, Han [1 ]
Chen, Zhenzhong [1 ,2 ]
机构
[1] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[2] Hubei Luojia Lab, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Spatial resolution; Image reconstruction; Superresolution; Sensors; Correlation; Cameras; Adversarial learning; attention mechanism; hyperspectral imagery; spectral super-resolution (SSR); HYPERSPECTRAL DATA; EO-1; HYPERION; SPARSE; NETWORK;
D O I
10.1109/JSTARS.2023.3238853
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Acquiring high-quality hyperspectral imagery with high spatial and spectral resolution plays an important role in remote sensing. Due to the limited capacity of sensors, providing high spatial and spectral resolution is still a challenging issue. Spectral super-resolution (SSR) increases the spectral dimensionality of multispectral images to achieve resolution enhancement. In this article, we propose a spectral resolution enhancement method based on the generative adversarial network framework without introducing additional spectral responses prior. In order to adaptively rescale informative features for capturing interdependencies in the spectral and spatial dimensions, a spatial spectral feature attention module is introduced. The proposed method jointly exploits spatio-spectral distribution in the hyperspectral manifold to increase spectral resolution while maintaining spatial content consistency. Experiments are conducted on both synthetic Landsat 8 and Sentinel-2 radiance data and real coregistered advanced land image and Hyperion (MS and HS) images, which indicates the superiority of the proposed method compared to other state-of-the-art methods.
引用
收藏
页码:1550 / 1562
页数:13
相关论文
共 51 条
  • [1] In Defense of Shallow Learned Spectral Reconstruction from RGB Images
    Aeschbacher, Jonas
    Wu, Jiqing
    Timofte, Radu
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 471 - 479
  • [2] K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    Aharon, Michal
    Elad, Michael
    Bruckstein, Alfred
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) : 4311 - 4322
  • [3] Hyperspectral Recovery from RGB Images using Gaussian Processes
    Akhtar, Naveed
    Mian, Ajmal
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2020, 42 (01) : 100 - 113
  • [4] Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB
    Alvarez-Gila, Aitor
    van de Weijer, Joost
    Garrote, Estibaliz
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, : 480 - 490
  • [5] Real Image Denoising with Feature Attention
    Anwar, Saeed
    Barnes, Nick
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 3155 - 3164
  • [6] NTIRE 2020 Challenge on Spectral Reconstruction from an RGB Image
    Arad, Boaz
    Timofte, Radu
    Ben-Shahar, Ohad
    Lin, Yi-Tun
    Finlayson, Graham
    Givati, Shai
    Li, Jiaojiao
    Wu, Chaoxiong
    Song, Rui
    Li, Yunsong
    Liu, Fei
    Lang, Zhiqiang
    Wei, Wei
    Zhang, Lei
    Nie, Jiangtao
    Zhao, Yuzhi
    Po, Lai-Man
    Yan, Qiong
    Liu, Wei
    Lin, Tingyu
    Kim, Youngjung
    Shin, Changyeop
    Rho, Kyeongha
    Kim, Sungho
    Zhu, Zhiyu
    Hou, Junhui
    Sun, He
    Ren, Jinchang
    Fang, Zhenyu
    Yan, Yijun
    Peng, Hao
    Chen, Xiaomei
    Zhao, Jie
    Stiebel, Tarek
    Koppers, Simon
    Merhof, Dorit
    Gupta, Honey
    Mitra, Kaushik
    Fubara, Biebele Joslyn
    Sedky, Mohamed
    Dyke, Dave
    Banerjee, Atmadeep
    Palrecha, Akash
    Sabarinathan
    Uma, K.
    Vinothini, D. Synthiya
    Bama, B. Sathya
    Roomi, S. M. Md Mansoor
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 1806 - 1822
  • [7] Sparse Recovery of Hyperspectral Signal from Natural RGB Images
    Arad, Boaz
    Ben-Shahar, Ohad
    [J]. COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 : 19 - 34
  • [8] Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    Dobigeon, Nicolas
    Parente, Mario
    Du, Qian
    Gader, Paul
    Chanussot, Jocelyn
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) : 354 - 379
  • [9] Hyperspectral subspace identification
    Bioucas-Dias, Jose M.
    Nascimento, Jose M. P.
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (08): : 2435 - 2445
  • [10] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122