Machine-learning based automatic assessment of communication in interpreting

被引:1
|
作者
Wang, Xiaoman [1 ]
Yuan, Lu [1 ]
机构
[1] Univ Leeds, Sch Language Culture & Soc, Leeds, England
关键词
automatic assessment; communication in interpreting; machine learning; computational features for fidelity; computational metrics for delivery;
D O I
10.3389/fcomm.2023.1047753
中图分类号
G2 [信息与知识传播];
学科分类号
05 ; 0503 ;
摘要
Communication assessment in interpreting has developed into an area with new models and continues to receive growing attention in recent years. The process refers to the assessment of messages composed of both "verbal" and "nonverbal" signals. A few relevant studies revolving around automatic scoring investigated the assessment of fluency based on objective temporal measures, and the correlation between the machine translation metrics and human scores. There is no research exploring machine-learning-based automatic scoring in-depth integrating parameters of delivery and information. What remains fundamentally challenging to demonstrate is which parameters, extracted through an automatic methodology, predict more reliable results. This study presents an original study with the aim to propose and test a machine learning approach to automatically assess communication in English/Chinese interpreting. It proposes to build predictive models using machine learning algorithms, extracting parameters for delivery, and applying a translation quality estimation model for information assessment to describe the final model. It employs the K-nearest neighbour algorithm and support vector machine for further analysis. It is found that the best machine-learning model built with all features by Support Vector Machine shows an accuracy of 62.96%, which is better than the K-nearest neighbour model with an accuracy of 55.56%. The assessment results of the pass level can be accurately predicted, which indicates that the machine learning models are able to screen the interpretations that pass the exam. The study is the first to build supervised machine learning models integrating both delivery and fidelity features to predict quality of interpreting. The machine learning models point to the great potential of automatic scoring with little human evaluation involved in the process. Automatic assessment of communication is expected to complete multi-tasks within a brief period by taking both holistic and analytical approaches to assess accuracy, fidelity and delivery. The proposed automatic scoring system might facilitate human-machine collaboration in the future. It can generate instant feedback for students by evaluating input renditions or abridge the workload for educators in interpreting education by screening performance for subsequent human scoring.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Interpreting and Stabilizing Machine-Learning Parametrizations of Convection
    Brenowitz, Noah D.
    Beucler, Tom
    Pritchard, Michael
    Bretherton, Christopher S.
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2020, 77 (12) : 4357 - 4375
  • [2] A machine-learning framework for automatic reference-free quality assessment in MRI
    Kuestner, T.
    Gatidis, S.
    Liebgott, A.
    Schwartz, M.
    Mauch, L.
    Martirosian, P.
    Schmidt, H.
    Schwenzer, N. F.
    Nikolaou, K.
    Bamberg, F.
    Yang, B.
    Schick, F.
    MAGNETIC RESONANCE IMAGING, 2018, 53 : 134 - 147
  • [3] A toolkit for power system security assessment based on machine-learning techniques
    Semitekos, DD
    Avouris, NM
    Giannakopoulos, GB
    ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, 2004, 12 (02): : 81 - 97
  • [4] Machine Learning Based Automatic Diagnosis in Mobile Communication Networks
    Chen, Kuo-Ming
    Chang, Tsung-Hui
    Wang, Kai-Cheng
    Lee, Ta-Sung
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (10) : 10081 - 10093
  • [5] Fully Automatic Assessment of Background Parenchymal Enhancement on Breast MRI Using Machine-Learning Models
    Nam, Yoonho
    Park, Ga Eun
    Kang, Junghwa
    Kim, Sung Hun
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 53 (03) : 818 - 826
  • [6] Machine-Learning Based Automatic and Real-time Detection of Mouse Scratching Behaviors
    Park, Ingyu
    Lee, Kyeongho
    Bishayee, Kausik
    Jeon, Hong Jin
    Lee, Hyosang
    Lee, Unjoo
    EXPERIMENTAL NEUROBIOLOGY, 2019, 28 (01) : 54 - 61
  • [7] Novel automatic scorpion-detection and -recognition system based on machine-learning techniques
    Giambelluca, Francisco L.
    Cappelletti, Marcelo A.
    Osio, Jorge R.
    Giambelluca, Luis A.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (02):
  • [8] A Machine-Learning Model for Automatic Detection of Movement Compensations in Stroke Patients
    Kashi, Shir
    Polak, Ronit Feingold
    Lerner, Boaz
    Rokach, Lior
    Levy-Tzedek, Shelly
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2021, 9 (03) : 1234 - 1247
  • [9] Machine-Learning based IoT Data Caching
    Pahl, Marc-Oliver
    Liebald, Stefan
    Wuestrich, Lars
    2019 IFIP/IEEE SYMPOSIUM ON INTEGRATED NETWORK AND SERVICE MANAGEMENT (IM), 2019,
  • [10] Assessment of aggregation strategies for machine-learning based short-term load forecasting
    Feng, Cong
    Zhang, Jie
    ELECTRIC POWER SYSTEMS RESEARCH, 2020, 184