Bilayer Lipid Membrane as Memcapacitance: Capacitance-Voltage Pinched Hysteresis and Negative Insertion Conductance

被引:4
作者
Smirnova, Elena Yu. [1 ]
Anosov, Andrey. A. A. [1 ,2 ]
机构
[1] Sechenov Univ, Sechenov Moscow State Med Univ 1, Dept Med & Biol Phys, Moscow 119991, Russia
[2] RAS, Kotelnikov Inst Radioengn & Elect, Moscow 125009, Russia
关键词
bilayer lipid membranes; non-linear capacitance; pinched hysteresis loops; memcapacitance; negative conductance; DEPENDENCE; CIRCUIT; SYSTEM; AREA;
D O I
10.3390/membranes13010097
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Inelastic (dissipative) effects of different natures in lipid bilayer membranes can lead to hysteresis phenomena. Early, it was shown that lipid bilayer membranes, under the action of a periodic sinusoidal voltage, demonstrate pinched-hysteresis loops in the experimental capacitance-voltage dependences and are almost the only example of the physical implementation of memcapacitance. Here, we propose an equivalent circuit and mathematical framework for analyzing the dynamic nonlinear current response of a lipid bilayer membrane as an externally controlled memcapacitance. Solving a nonlinear differential equation for the equivalent circuit of a membrane in the form of a parallel connection of a nonlinear viscoelastic capacitor and an active resistance using the small parameter method, we obtain explicit analytical dependences for the current response of the membrane and pinched-hysteresis loops. The explicit solutions and their comparison with experimental data allow us to identify the lumped equivalent circuit parameters that govern the memcapacitor behavior of the membrane and hence the magnitude of the hysteresis. We quantify the memcapacitance hysteresis in terms of negative work done by the control signal. An analysis of the formulas leads to the conclusion that the determining factor for the appearance of pinched hysteresis is the type of nonlinear dependence of the device capacitance on voltage.
引用
收藏
页数:20
相关论文
共 35 条
  • [1] ABIDOR IG, 1986, BIOL MEMBRANY, V3, P627
  • [2] VOLTAGE-DEPENDENT CAPACITANCE IN LIPID BILAYERS MADE FROM MONOLAYERS
    ALVAREZ, O
    LATORRE, R
    [J]. BIOPHYSICAL JOURNAL, 1978, 21 (01) : 1 - 17
  • [3] Surface and Structure of Phosphatidylcholine Membranes Reconstructed with CoFe2O4 Nanoparticles
    Anosov, Andrey
    Astanina, Polina
    Proskuryakov, Ivan
    Koplak, Oksana
    Morgunov, Roman
    [J]. LANGMUIR, 2022, 38 (47) : 14517 - 14526
  • [4] VOLTAGE-INDUCED CAPACITANCE RELAXATION OF LIPID BILAYER MEMBRANES - EFFECTS OF MEMBRANE COMPOSITION
    BENZ, R
    JANKO, K
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA, 1976, 455 (03) : 721 - 738
  • [5] ELECTRICAL CAPACITY OF BLACK LIPID FILMS AND OF LIPID BILAYERS MADE FROM MONOLAYERS
    BENZ, R
    FROHLICH, O
    LAUGER, P
    MONTAL, M
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA, 1975, 394 (03) : 323 - 334
  • [6] MEMRISTOR - MISSING CIRCUIT ELEMENT
    CHUA, LO
    [J]. IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (05): : 507 - +
  • [7] On the physical properties of memristive, memcapacitive and meminductive systems
    Di Ventra, Massimiliano
    Pershin, Yuriy V.
    [J]. NANOTECHNOLOGY, 2013, 24 (25)
  • [8] Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors
    Di Ventra, Massimiliano
    Pershin, Yuriy V.
    Chua, Leon O.
    [J]. PROCEEDINGS OF THE IEEE, 2009, 97 (10) : 1717 - 1724
  • [9] A new approach for investigating the response of lipid membranes to electrocompression by coupling droplet mechanics and membrane biophysics
    El-Beyrouthy, Joyce
    Makhoul-Mansour, Michelle M.
    Taylor, Graham
    Sarles, Stephen A.
    Freeman, Eric C.
    [J]. JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2019, 16 (161)
  • [10] Voltage-dependent capacitance of human embryonic kidney cells
    Farrell, B
    Do Shope, C
    Brownell, WE
    [J]. PHYSICAL REVIEW E, 2006, 73 (04):