Recycling of graphite anode from spent lithium-ion batteries: Advances and perspectives

被引:76
作者
Qiao, Yu [1 ,2 ]
Zhao, Huaping [2 ]
Shen, Yonglong [3 ]
Li, Liqiang [4 ]
Rao, Zhonghao [1 ]
Shao, Guosheng [3 ]
Lei, Yong [2 ]
机构
[1] Hebei Univ Technol, Sch Energy & Environm Engn, Hebei Key Lab Thermal Sci & Energy Clean Utilizat, Tianjin 300401, Peoples R China
[2] Tech Univ Ilmenau, Inst Phys & IMN MacroNano, Fachgebiet Angew Nanophys, Ilmenau, Germany
[3] Zhengzhou Univ, Sch Mat Sci & Engn, Zhengzhou 450001, Peoples R China
[4] Tianjin Univ, Inst Mol Aggregat Sci, Dept Chem, Tianjin Key Lab Mol Optoelect Sci, Tianjin, Peoples R China
关键词
graphite anode; recycling; regeneration; reutilization; spent lithium-ion batteries; SOLID-ELECTROLYTE INTERPHASE; REDUCED GRAPHENE OXIDE; IN-SITU; CATALYTIC PERFORMANCE; LITHIATED GRAPHITE; FAILURE MECHANISMS; CATHODE MATERIALS; DENDRITIC GROWTH; CRACK FORMATION; CURRENT-DENSITY;
D O I
10.1002/eom2.12321
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
There is growing production for lithium-ion batteries (LIBs) to satisfy the booming development renewable energy storage systems. Meanwhile, amounts of spent LIBs have been generated and will become more soon. Therefore, the proper disposal of these spent LIBs is of significant importance. Graphite is the dominant anode in most commercial LIBs. This review specifically focuses on the recent advances in the recycling of graphite anode (GA) from spent LIBs. It covers the significance of GA recycling from spent LIBs, the introduction of the GA aging mechanisms in LIBs, the summary of the developed GA recovery strategies, and the highlight of reclaimed GA for potential applications. In addition, the prospect related to the future challenges of GA recycling is given at the end. It is expected that this review will provide practical guidance for researchers engaged in the field of spent LIBs recycling.
引用
收藏
页数:27
相关论文
共 164 条
[1]   Graphite Recycling from End-of-Life Lithium-Ion Batteries: Processes and Applications [J].
Abdollahifar, Mozaffar ;
Doose, Stefan ;
Cavers, Heather ;
Kwade, Arno .
ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (02)
[2]   The formation and stability of the solid electrolyte interface on the graphite anode [J].
Agubra, Victor A. ;
Fergus, Jeffrey W. .
JOURNAL OF POWER SOURCES, 2014, 268 :153-162
[3]   Cation Ordering and Oxygen Release in LiNi0.5-xMn1.5+xO4-y (LNMO): In Situ Neutron Diffraction and Performance in Li Ion Full Cells [J].
Aktekin, Burak ;
Valvo, Mario ;
Smith, Ronald I. ;
Sorby, Magnus H. ;
Marzano, Fernanda Lodi ;
Zipprich, Wolfgang ;
Brandell, Daniel ;
Edstrom, Kristina ;
Brant, William R. .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (05) :3323-3335
[4]   Strategies for the Analysis of Graphite Electrode Function [J].
Andersen, Henrik Lyder ;
Djuandhi, Lisa ;
Mittal, Uttam ;
Sharma, Neeraj .
ADVANCED ENERGY MATERIALS, 2021, 11 (48)
[5]  
[Anonymous], 2021, BATTERY RECYCLING OV
[6]   Capacity fade mechanisms and side reactions in lithium-ion batteries [J].
Arora, P ;
White, RE ;
Doyle, M .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (10) :3647-3667
[7]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[8]   Key Challenges and Opportunities for Recycling Electric Vehicle Battery Materials [J].
Beaudet, Alexandre ;
Larouche, Francois ;
Amouzegar, Kamyab ;
Bouchard, Patrick ;
Zaghib, Karim .
SUSTAINABILITY, 2020, 12 (14)
[9]   A transmission electron microscopy study of crack formation and propagation in electrochemically cycled graphite electrode in lithium-ion cells [J].
Bhattacharya, Sandeep ;
Riahi, A. Reza ;
Alpas, Ahmet T. .
JOURNAL OF POWER SOURCES, 2011, 196 (20) :8719-8727
[10]   Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries [J].
Bi, Haijun ;
Zhu, Huabing ;
Zu, Lei ;
Gao, Yong ;
Gao, Song ;
Wu, Zhongwei .
WASTE MANAGEMENT & RESEARCH, 2019, 37 (12) :1217-1228