Numerical Investigation of Droplet Impact on the Surface by Multiphase Lattice Boltzmann Flux Solver

被引:0
|
作者
Bian, Qingyong [1 ,2 ]
Shu, Chang [3 ]
Zhao, Ning [1 ,2 ]
Zhu, Chengxiang [1 ,2 ]
Zhu, Chunling [1 ,2 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, Nanjing 210016, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Jiangsu, Peoples R China
[3] Natl Univ Singapore, Dept Mech Engn, Singapore 119260, Singapore
来源
PROCEEDINGS OF THE 2021 ASIA-PACIFIC INTERNATIONAL SYMPOSIUM ON AEROSPACE TECHNOLOGY (APISAT 2021), VOL 1 | 2023年 / 912卷
基金
中国国家自然科学基金;
关键词
Lattice Boltzmann method; Large density ratio; Droplet impact; Rebound and adhesion; FLOWS;
D O I
10.1007/978-981-19-2689-1_52
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The dynamic behaviors of the micro-sized water droplet collision onto the wings of the aircraft are essential to the flight safety. The details on the small droplet in the airflow in contact with the aircraft wing surface play a quite important role in the ice accretion process. In this paper, multiphase lattice Boltzmann flux solver coupled with phase field method is applied to simulate the water droplet impact onto the solid hydrophilic/hydrophobic surface to further understand the interactions between droplet and surface at mesoscopic level. The reliability and accuracy of the numerical method is validated by the comparison with experimental data and computational results in other literatures, which shows that the solver is capable of predicting the droplet dynamic behaviors. Then, the effects of different physical parameters such as impact velocity, droplet diameter, surface contact angle and impact inclination angle, are systematically studied. The computational results reveal that when the collision is normal to the surface, the water droplet may experience spreading phase, recoiling phase as well as rebounding phase and finally shows the adhesion state or detachment from the surface. The higher velocity and larger diameter contribute to spread the droplet wider and jump higher during the droplet impact process. And a shorter physical time is taken to reach the spreading factor maximum for higher velocity while it is opposite for the droplet with a lager diameter. Moreover, the whole evolutionary process of smaller-sized droplet is accelerated and smaller diameter as well as higher contact angle of the surface advances the droplet detachment from the hydrophobic surface. It is also found that the surface with higher contact angle impedes the droplet spreading and removes the temporal lag of its performance in lifting up the upper end of droplet during recoiling phase and rebounding phase, which is distinct to the results of higher velocity and larger diameter. Besides this, droplet impact with an inclination angle causes reduction on the spreading factor maximum and jump height after detachment from the surface due to the decrease on the normal velocity of the droplet. And the increase of the tangential velocity accounts for the longer contact time with the surface for the droplet, and causes the difference of the spreading factors in spreading directions, which forms an oval contact area on the surface until the droplet detaches. The analysis and quantitative comparison of the temporal morphology evolutions of the micro-sized droplet in this paper help to reveal the interaction mechanism between the different-sized droplets and surfaces with different properties, which can be considered specially in the numerical prediction of the aircraft icing.
引用
收藏
页码:671 / 684
页数:14
相关论文
共 50 条
  • [41] Numerical simulation of pulmonary airway reopening by the multiphase lattice Boltzmann method
    He, Bing
    Qin, Chunyan
    Chen, Wenbo
    Wen, Binghai
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 108 : 196 - 205
  • [42] Lattice Boltzmann Study of the Water Droplet on a Surface Corrugated with Nanopillars
    Jang, Jihye
    Park, Sung Woo
    Kim, Hyojeong
    Matin, Mohammad A.
    Zhang, Zhengqing
    Jang, Joonkyung
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2015, 36 (03) : 896 - 899
  • [43] Impact process of a droplet on solid surfaces: Influence of surface wettability using lattice Boltzmann method
    Channouf, Salaheddine
    Jami, Mohammed
    Mezrhab, Ahmed
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2024, 105 : 164 - 179
  • [44] Lattice Boltzmann simulation of dynamics of droplet impact on inclined walls
    Hoseinpour, Batool
    Sarreshtehdari, Ali
    Ashorynejad, Hamid Reza
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2019, 30 (08):
  • [45] Lattice Boltzmann model for thermal behavior of a droplet on the solid surface
    Taghilou, Mohammad
    Rahimian, Mohammad Hassan
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2014, 86 : 1 - 11
  • [46] Numerical investigation of a combined lattice Boltzmann-level set method for three-dimensional multiphase flow
    Thoemmes, G.
    Becker, J.
    Junk, M.
    Vaikuntam, A. K.
    Kehrwald, D.
    Klar, A.
    Steiner, K.
    Wiegmann, A.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL FLUID DYNAMICS, 2009, 23 (10) : 687 - 697
  • [47] Numerical flow noise simulation of an axial fan with a Lattice-Boltzmann solver
    Antoniou, Evangelos
    Romani, Gianluca
    Jantzen, Andreas
    Czwielong, Felix
    Schoder, Stefan
    ACTA ACUSTICA, 2023, 7
  • [48] An immersed boundary-lattice boltzmann flux solver in a moving frame to study three-dimensional freely falling rigid bodies
    Wang, Y.
    Shu, C.
    Yang, L. M.
    Teo, C. J.
    JOURNAL OF FLUIDS AND STRUCTURES, 2017, 68 : 444 - 465
  • [49] Thermal lattice Boltzmann flux solver and its application for simulation of incompressible thermal flows
    Wang, Y.
    Shu, C.
    Teo, C. J.
    COMPUTERS & FLUIDS, 2014, 94 : 98 - 111
  • [50] Numerical study of Janus droplet formation in microchannels by a lattice Boltzmann method
    Fu, Yuhang
    Bai, Lin
    Bi, Kexin
    Zhao, Shufang
    Jin, Yong
    Cheng, Yi
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2017, 119 : 34 - 43