MST-GAT: A multimodal spatial-temporal graph attention network for time series anomaly detection

被引:107
作者
Ding, Chaoyue [1 ]
Sun, Shiliang [1 ,2 ]
Zhao, Jing [1 ]
机构
[1] East China Normal Univ, Sch Comp Sci & Technol, 3663 North Zhongshan Rd, Shanghai 200062, Peoples R China
[2] Zhejiang Normal Univ, Coll Math & Comp Sci, 688 Yingbin Rd, Jinhua 321004, Peoples R China
关键词
Multimodal time series; Anomaly detection; Graph attention networks; Unsupervised learning; CLASSIFICATION;
D O I
10.1016/j.inffus.2022.08.011
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multimodal time series (MTS) anomaly detection is crucial for maintaining the safety and stability of working devices (e.g., water treatment system and spacecraft), whose data are characterized by multivariate time series with diverse modalities. Although recent deep learning methods show great potential in anomaly detection, they do not explicitly capture spatial-temporal relationships between univariate time series of different modalities, resulting in more false negatives and false positives. In this paper, we propose a multimodal spatial- temporal graph attention network (MST-GAT) to tackle this problem. MST-GAT first employs a multimodal graph attention network (M-GAT) and a temporal convolution network to capture the spatial-temporal correlation in multimodal time series. Specifically, M-GAT uses a multi-head attention module and two relational attention modules (i.e., intra-and inter-modal attention) to model modal correlations explicitly. Furthermore, MST-GAT optimizes the reconstruction and prediction modules simultaneously. Experimental results on four multimodal benchmarks demonstrate that MST-GAT outperforms the state-of-the-art baselines. Further analysis indicates that MST-GAT strengthens the interpretability of detected anomalies by locating the most anomalous univariate time series.
引用
收藏
页码:527 / 536
页数:10
相关论文
共 54 条
  • [1] Ahmed CM, 2017, P 3 INT WORKSH CYB P, P25, DOI [10.1145/3055366.3055375, DOI 10.1145/3055366.3055375]
  • [2] [Anonymous], 2012, Book A probabilistic model for multimodal hash function learning, DOI DOI 10.1145/2339530.2339678
  • [3] USAD : UnSupervised Anomaly Detection on Multivariate Time Series
    Audibert, Julien
    Michiardi, Pietro
    Guyard, Frederic
    Marti, Sebastien
    Zuluaga, Maria A.
    [J]. KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3395 - 3404
  • [4] Bahdanau D, 2016, Arxiv, DOI [arXiv:1409.0473, 10.48550/arXiv.1409.0473, DOI 10.48550/ARXIV.1409.0473]
  • [5] Braei M, 2020, Arxiv, DOI [arXiv:2004.00433, DOI 10.48550/ARXIV.2004.00433]
  • [6] Chalapathy R, 2019, Arxiv, DOI arXiv:1901.03407
  • [7] On the time series K-nearest neighbor classification of abnormal brain activity
    Chaovalitwongse, Wanpracha Art
    Sachdeo, Rajesh C.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2007, 37 (06): : 1005 - 1016
  • [8] Chung JY, 2014, Arxiv, DOI arXiv:1412.3555
  • [9] Cirstea RG, 2021, Arxiv, DOI arXiv:2103.10760
  • [10] Daehyung Park, 2018, IEEE Robotics and Automation Letters, V3, P1544, DOI 10.1109/LRA.2018.2801475