MST-GAT: A multimodal spatial-temporal graph attention network for time series anomaly detection
被引:104
|
作者:
Ding, Chaoyue
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Comp Sci & Technol, 3663 North Zhongshan Rd, Shanghai 200062, Peoples R ChinaEast China Normal Univ, Sch Comp Sci & Technol, 3663 North Zhongshan Rd, Shanghai 200062, Peoples R China
Ding, Chaoyue
[1
]
Sun, Shiliang
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Comp Sci & Technol, 3663 North Zhongshan Rd, Shanghai 200062, Peoples R China
Zhejiang Normal Univ, Coll Math & Comp Sci, 688 Yingbin Rd, Jinhua 321004, Peoples R ChinaEast China Normal Univ, Sch Comp Sci & Technol, 3663 North Zhongshan Rd, Shanghai 200062, Peoples R China
Sun, Shiliang
[1
,2
]
Zhao, Jing
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Comp Sci & Technol, 3663 North Zhongshan Rd, Shanghai 200062, Peoples R ChinaEast China Normal Univ, Sch Comp Sci & Technol, 3663 North Zhongshan Rd, Shanghai 200062, Peoples R China
Zhao, Jing
[1
]
机构:
[1] East China Normal Univ, Sch Comp Sci & Technol, 3663 North Zhongshan Rd, Shanghai 200062, Peoples R China
[2] Zhejiang Normal Univ, Coll Math & Comp Sci, 688 Yingbin Rd, Jinhua 321004, Peoples R China
Multimodal time series (MTS) anomaly detection is crucial for maintaining the safety and stability of working devices (e.g., water treatment system and spacecraft), whose data are characterized by multivariate time series with diverse modalities. Although recent deep learning methods show great potential in anomaly detection, they do not explicitly capture spatial-temporal relationships between univariate time series of different modalities, resulting in more false negatives and false positives. In this paper, we propose a multimodal spatial- temporal graph attention network (MST-GAT) to tackle this problem. MST-GAT first employs a multimodal graph attention network (M-GAT) and a temporal convolution network to capture the spatial-temporal correlation in multimodal time series. Specifically, M-GAT uses a multi-head attention module and two relational attention modules (i.e., intra-and inter-modal attention) to model modal correlations explicitly. Furthermore, MST-GAT optimizes the reconstruction and prediction modules simultaneously. Experimental results on four multimodal benchmarks demonstrate that MST-GAT outperforms the state-of-the-art baselines. Further analysis indicates that MST-GAT strengthens the interpretability of detected anomalies by locating the most anomalous univariate time series.
机构:
Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430070, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430070, Peoples R China
Qian, Lipeng
Zuo, Qiong
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430070, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430070, Peoples R China
Zuo, Qiong
Liu, Haiguang
论文数: 0引用数: 0
h-index: 0
机构:
State Grid Hubei Elect Power Res Inst, Wuhan 430062, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430070, Peoples R China
Liu, Haiguang
Zhu, Hong
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430070, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan 430070, Peoples R China
机构:
Hohai Univ, Coll Comp & Informat, Nanjing 211100, Jiangsu, Peoples R ChinaHohai Univ, Coll Comp & Informat, Nanjing 211100, Jiangsu, Peoples R China
Chen, Ling
Mao, Yingchi
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Key Lab Water Big Data Technol, Minist Water Resources, Nanjing 211100, Jiangsu, Peoples R ChinaHohai Univ, Coll Comp & Informat, Nanjing 211100, Jiangsu, Peoples R China
Mao, Yingchi
Zhou, Hongliang
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Coll Comp & Informat, Nanjing 211100, Jiangsu, Peoples R ChinaHohai Univ, Coll Comp & Informat, Nanjing 211100, Jiangsu, Peoples R China
Zhou, Hongliang
Zhang, Benteng
论文数: 0引用数: 0
h-index: 0
机构:
Hohai Univ, Coll Comp & Informat, Nanjing 211100, Jiangsu, Peoples R ChinaHohai Univ, Coll Comp & Informat, Nanjing 211100, Jiangsu, Peoples R China
Zhang, Benteng
Wang, Zicheng
论文数: 0引用数: 0
h-index: 0
机构:
PowerChina Kunming Engn Corp Ltd, Kunming 650051, Yunnan, Peoples R ChinaHohai Univ, Coll Comp & Informat, Nanjing 211100, Jiangsu, Peoples R China
Wang, Zicheng
Wu, Jie
论文数: 0引用数: 0
h-index: 0
机构:
Temple Univ, Ctr Networked Comp, Philadelphia, PA 19122 USAHohai Univ, Coll Comp & Informat, Nanjing 211100, Jiangsu, Peoples R China
机构:
The College of Electrical Engineering, Sichuan University, Chengdu, Chengdu,610065, ChinaThe College of Electrical Engineering, Sichuan University, Chengdu, Chengdu,610065, China
Zeng, Lai
Yang, Xiaomei
论文数: 0引用数: 0
h-index: 0
机构:
The College of Electrical Engineering, Sichuan University, Chengdu, Chengdu,610065, ChinaThe College of Electrical Engineering, Sichuan University, Chengdu, Chengdu,610065, China