SPLIT FIXED POINT PROBLEMS FOR QUASI-NONEXPANSIVE MAPPINGS IN HILBERT SPACES

被引:0
作者
Sharma, Shagun [1 ]
Chandok, Sumit [1 ]
机构
[1] Thapar Inst Engn & Technol, Dept Math, Patiala 147004, India
来源
UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS | 2024年 / 86卷 / 01期
关键词
best proximity point; fixed point; Hilbert space; quasi-nonexpansive mappings; PROXIMITY POINTS; CONVERGENCE; THEOREMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce an algorithm that converges to a solution of the split fixed point problem under some conditions. We apply our main results for solv-ing the split best proximity point problem. The main results of Suantai and Tiammee [J. Nonlinear Convex Anal. 22(2021) 2661-2670] related to the study of convergence of best proximity points for best proximally nonexpansive non-self mappings can be directly concluded from the convergence results of fixed points for quasi-nonexpansive self mappings. Therefore, these findings are not real generalizations. Furthermore, we apply our results to the common best proximity point problem in real Hilbert spaces. Finally, we give numerical results to demonstrate its convergence.
引用
收藏
页码:109 / 118
页数:10
相关论文
共 21 条
[1]   Best Proximity Points: Optimal Solutions [J].
Basha, S. Sadiq .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 151 (01) :210-216
[2]  
Censor Y., 1994, Numer Algorithms, V8, P221, DOI [10.1007/BF02142692, DOI 10.1007/BF02142692]
[3]   A discussion on best proximity point and coupled best proximity point in partially ordered metric spaces [J].
Choudhury, Binayak S. ;
Metiya, Nikhilesh ;
Postolache, Mihai ;
Konar, Pulak .
FIXED POINT THEORY AND APPLICATIONS, 2015,
[4]   Forward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators [J].
Dadashi, Vahid ;
Postolache, Mihai .
ARABIAN JOURNAL OF MATHEMATICS, 2020, 9 (01) :89-99
[5]  
Dotson W.G., 1972, J. Austral. Math. Soc., V13, P167, DOI DOI 10.1017/S144678870001123X
[6]   EXTENSIONS OF 2 FIXED POINT THEOREMS OF BROWDER,FE [J].
FAN, K .
MATHEMATISCHE ZEITSCHRIFT, 1969, 112 (03) :234-&
[7]   Best Proximity Point Theorems via Proximal Non-self Mappings [J].
Gabeleh, Moosa .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 164 (02) :565-576
[8]  
Jacob GK, 2017, U POLITEH BUCH SER A, V79, P49
[9]   A note on the split common fixed-point problem for quasi-nonexpansive operators [J].
Moudafi, A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (12) :4083-4087