HRadNet: A Hierarchical Radiomics-Based Network for Multicenter Breast Cancer Molecular Subtypes Prediction

被引:2
作者
Liang, Yinhao [1 ]
Tang, Wenjie [2 ,3 ]
Wang, Ting [2 ,3 ]
Ng, Wing W. Y. [1 ]
Chen, Siyi [2 ,3 ]
Jiang, Kuiming [4 ]
Wei, Xinhua [2 ,3 ]
Jiang, Xinqing [2 ,3 ]
Guo, Yuan [2 ,3 ]
机构
[1] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[2] Guangzhou First Peoples Hosp, Dept Radiol, Guangzhou 510180, Peoples R China
[3] South China Univ Technol, Sch Med, Guangzhou 510180, Peoples R China
[4] Guangdong Women & Children Hosp, Dept Radiol, Guangzhou 510010, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Breast cancer; Biomedical imaging; Radiomics; Metadata; Training; Medical diagnostic imaging; Magnetic resonance imaging; Breast cancer molecular subtypes; luminal; metadata; multicenter; multilayer features; THERAPY; ERROR;
D O I
10.1109/TMI.2023.3331301
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Breast cancer is a heterogeneous disease, where molecular subtypes of breast cancer are closely related to the treatment and prognosis. Therefore, the goal of this work is to differentiate between luminal and non-luminal subtypes of breast cancer. The hierarchical radiomics network (HRadNet) is proposed for breast cancer molecular subtypes prediction based on dynamic contrast-enhanced magnetic resonance imaging. HRadNet fuses multilayer features with the metadata of images to take advantage of conventional radiomics methods and general convolutional neural networks. A two-stage training mechanism is adopted to improve the generalization capability of the network for multicenter breast cancer data. The ablation study shows the effectiveness of each component of HRadNet. Furthermore, the influence of features from different layers and metadata fusion are also analyzed. It reveals that selecting certain layers of features for a specified domain can make further performance improvements. Experimental results on three data sets from different devices demonstrate the effectiveness of the proposed network. HRadNet also has good performance when transferring to other domains without fine-tuning.
引用
收藏
页码:1225 / 1236
页数:12
相关论文
共 52 条
[1]  
Amin M.B., 2017, AJCC cancer staging manual, V1024
[2]   A deep feature fusion methodology for breast cancer diagnosis demonstrated on three imaging modality datasets [J].
Antropova, Natalia ;
Huynh, Benjamin Q. ;
Giger, Maryellen L. .
MEDICAL PHYSICS, 2017, 44 (10) :5162-5171
[3]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[4]   Performance comparison of modified ComBat for harmonization of radiomic features for multicenter studies [J].
Da-ano, R. ;
Masson, I ;
Lucia, F. ;
Dore, M. ;
Robin, P. ;
Alfieri, J. ;
Rousseau, C. ;
Mervoyer, A. ;
Reinhold, C. ;
Castelli, J. ;
De Crevoisier, R. ;
Ramee, J. F. ;
Pradier, O. ;
Schick, U. ;
Visvikis, D. ;
Hatt, M. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[5]   Clinically applicable deep learning for diagnosis and referral in retinal disease [J].
De Fauw, Jeffrey ;
Ledsam, Joseph R. ;
Romera-Paredes, Bernardino ;
Nikolov, Stanislav ;
Tomasev, Nenad ;
Blackwell, Sam ;
Askham, Harry ;
Glorot, Xavier ;
O'Donoghue, Brendan ;
Visentin, Daniel ;
van den Driessche, George ;
Lakshminarayanan, Balaji ;
Meyer, Clemens ;
Mackinder, Faith ;
Bouton, Simon ;
Ayoub, Kareem ;
Chopra, Reena ;
King, Dominic ;
Karthikesalingam, Alan ;
Hughes, Cian O. ;
Raine, Rosalind ;
Hughes, Julian ;
Sim, Dawn A. ;
Egan, Catherine ;
Tufail, Adnan ;
Montgomery, Hugh ;
Hassabis, Demis ;
Rees, Geraint ;
Back, Trevor ;
Khaw, Peng T. ;
Suleyman, Mustafa ;
Cornebise, Julien ;
Keane, Pearse A. ;
Ronneberger, Olaf .
NATURE MEDICINE, 2018, 24 (09) :1342-+
[6]  
Ding Xiaohan, 2022, arXiv
[7]   The 21-gene recurrence score assay impacts adjuvant therapy recommendations for ER-positive, node-negative and node-positive early breast cancer resulting in a risk-adapted change in chemotherapy use [J].
Eiermann, W. ;
Rezai, M. ;
Kuemmel, S. ;
Kuehn, T. ;
Warm, M. ;
Friedrichs, K. ;
Schneeweiss, A. ;
Markmann, S. ;
Eggemann, H. ;
Hilfrich, J. ;
Jackisch, C. ;
Witzel, I. ;
Eidtmann, H. ;
Bachinger, A. ;
Hell, S. ;
Blohmer, J. .
ANNALS OF ONCOLOGY, 2013, 24 (03) :618-624
[8]  
Geirhos Robert, 2019, INT C LEARN REPR ICL
[9]   Strategies for subtypes-dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011 [J].
Goldhirsch, A. ;
Wood, W. C. ;
Coates, A. S. ;
Gelber, R. D. ;
Thuerlimann, B. ;
Senn, H. -J. .
ANNALS OF ONCOLOGY, 2011, 22 (08) :1736-1747
[10]   Predicting Breast Cancer Molecular Subtype with MRI Dataset Utilizing Convolutional Neural Network Algorithm [J].
Ha, Richard ;
Mutasa, Simukayi ;
Karcich, Jenika ;
Gupta, Nishant ;
Van Sant, Eduardo Pascual ;
Nemer, John ;
Sun, Mary ;
Chang, Peter ;
Liu, Michael Z. ;
Jambawalikar, Sachin .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (02) :276-282