MadFormer: multi-attention-driven image super-resolution method based on Transformer

被引:4
作者
Liu, Beibei [1 ]
Sun, Jing [1 ]
Zhu, Bing [2 ]
Li, Ting [1 ]
Sun, Fuming [1 ]
机构
[1] Dalian Minzu Univ, Sch Informat & Commun Engn, Liaohe West Rd, Dalian 116600, Liaoning, Peoples R China
[2] Harbin Inst Technol, Sch Elect & Informat Engn, Xidazhi St, Harbin 150006, Heilongjiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Image super-resolution; Transformer; Multi-attention-driven; Dynamic fusion;
D O I
10.1007/s00530-024-01276-1
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
While the Transformer-based method has demonstrated exceptional performance in low-level visual processing tasks, it has a strong modeling ability only locally, thereby neglecting the importance of spatial feature information and high-frequency details within the channel for super-resolution. To enhance feature information and improve the visual experience, we propose a multi-attention-driven image super-resolution method based on a Transformer network, called MadFormer. Initially, the low-resolution image undergoes an initial convolution operation to extract shallow features while being fed into a residual multi-attention block incorporating channel attention, spatial attention, and self-attention mechanisms. By employing multi-head self-attention, the proposed method aims to capture global-local feature information; channel attention and spatial attention are utilized to effectively capture high-frequency features in both the channel and spatial domains. Subsequently, deep feature information is inputted into a dynamic fusion block that dynamically fuses multi-attention extracted features, facilitating the aggregation of cross-window information. Ultimately, the shallow and deep feature information is fused via convolution operations, yielding high-resolution images through high-quality reconstruction. Comprehensive quantitative and qualitative comparisons with other advanced algorithms demonstrate the substantial advantages of the proposed approach in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) for image super-resolution.
引用
收藏
页数:11
相关论文
共 41 条
  • [1] Ben Niu, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12357), P191, DOI 10.1007/978-3-030-58610-2_12
  • [2] Low-Complexity Single-Image Super-Resolution based on Nonnegative Neighbor Embedding
    Bevilacqua, Marco
    Roumy, Aline
    Guillemot, Christine
    Morel, Marie-Line Alberi
    [J]. PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
  • [3] Cao Hu, 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13803), P205, DOI 10.1007/978-3-031-25066-8_9
  • [4] TCCL-Net: Transformer-Convolution Collaborative Learning Network for Omnidirectional Image Super-Resolution
    Chai, Xiongli
    Shao, Feng
    Jiang, Qiuping
    Ying, Hongwei
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 274
  • [5] Pre-Trained Image Processing Transformer
    Chen, Hanting
    Wang, Yunhe
    Guo, Tianyu
    Xu, Chang
    Deng, Yiping
    Liu, Zhenhua
    Ma, Siwei
    Xu, Chunjing
    Xu, Chao
    Gao, Wen
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 12294 - 12305
  • [6] Activating More Pixels in Image Super-Resolution Transformer
    Chen, Xiangyu
    Wang, Xintao
    Zhou, Jiantao
    Qiao, Yu
    Dong, Chao
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 22367 - 22377
  • [7] Conde Marcos V., 2023, Computer Vision - ECCV 2022 Workshops: Proceedings. Lecture Notes in Computer Science (13802), P669, DOI 10.1007/978-3-031-25063-7_42
  • [8] Second-order Attention Network for Single Image Super-Resolution
    Dai, Tao
    Cai, Jianrui
    Zhang, Yongbing
    Xia, Shu-Tao
    Zhang, Lei
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 11057 - 11066
  • [9] An enhanced vision transformer with wavelet position embedding for histopathological image classification
    Ding, Meidan
    Qu, Aiping
    Zhong, Haiqin
    Lai, Zhihui
    Xiao, Shuomin
    He, Penghui
    [J]. PATTERN RECOGNITION, 2023, 140
  • [10] Learning a Deep Convolutional Network for Image Super-Resolution
    Dong, Chao
    Loy, Chen Change
    He, Kaiming
    Tang, Xiaoou
    [J]. COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 184 - 199