First exit and Dirichlet problem for the nonisotropic tempered α-stable processes

被引:0
作者
Liu, Xing [1 ,2 ]
Deng, Weihua [2 ]
机构
[1] Hubei Normal Univ, Sch Math & Stat, Huangshi Key Lab Metaverse & Virtual Simulat, 11 Cihu Rd, Huangshi 435002, Hubei, Peoples R China
[2] Lanzhou Univ, Sch Math & Stat, Gansu Key Lab Appl Math & Complex Syst, 222 Tianshui South Rd, Lanzhou 730000, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
First exit; Nonisotropic tempered stable process; Feynman-Kac representation; Semigroup theory; MONTE-CARLO; ANOMALOUS DIFFUSION; RANDOM-WALKS; EQUATIONS; DOMAIN; TIME;
D O I
10.1007/s00180-024-01462-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper discusses the first exit and Dirichlet problems of the nonisotropic tempered alpha-stable process X-t. The upper bounds of all moments of the first exit position |X-tau D| and the first exit time tau(D) are explicitly obtained. It is found that the probability density function of |X-tau D| or tau(D) exponentially decays with the increase of |X-tau D| or tau(D), and E[tau(D)]similar to E[|X tau(D)-E[X tau(D)]|2], E[tau(D)]similar to|E[X tau(D)]|. Next, we obtain the Feynman-Kac representation of the Dirichlet problem by employing the semigroup theory. Furthermore, averaging the generated trajectories of the stochastic process leads to the solution of the Dirichlet problem, which is also verified by numerical experiments.
引用
收藏
页码:3801 / 3829
页数:29
相关论文
共 44 条
[1]   Parameter estimation for the truncated pareto distribution [J].
Aban, IB ;
Meerschaert, MM ;
Panorska, AK .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (473) :270-277
[2]   Domain decomposition solution of elliptic boundary-value problems via Monte Carlo and quasi-Monte Carlo methods [J].
Acebrón, JA ;
Busico, MP ;
Lanucara, P ;
Spigler, R .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 27 (02) :440-457
[3]   A FRACTIONAL LAPLACE EQUATION: REGULARITY OF SOLUTIONS AND FINITE ELEMENT APPROXIMATIONS [J].
Acosta, Gabriel ;
Pablo Borthagaray, Juan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (02) :472-495
[4]  
[Anonymous], 1961, Transactions of the American Mathematical Society, DOI DOI 10.2307/1993561
[5]  
Applebaum D., 2009, LEVY PROCESSES STOCH, V2nd, P116, DOI DOI 10.1017/CBO9780511809781
[6]   Tempered stable Levy motion and transient super-diffusion [J].
Baeumer, Boris ;
Meerschaert, Mark M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (10) :2438-2448
[8]  
Bogdan K, 1999, STUD MATH, V133, P53
[9]   The scaling laws of human travel [J].
Brockmann, D ;
Hufnagel, L ;
Geisel, T .
NATURE, 2006, 439 (7075) :462-465
[10]  
Chow Y. S., 2003, Probability theory: independence, interchangeability, martingales