ST-MFNET MINI: KNOWLEDGE DISTILLATION-DRIVEN FRAME INTERPOLATION

被引:3
作者
Morris, Crispian [1 ]
Danier, Duolikun [1 ]
Zhang, Fan [1 ]
Anantrasirichai, Nantheera [1 ]
Bull, David R. [1 ]
机构
[1] Univ Bristol, Bristol Vis Inst, One Cathedral Sq, Bristol BS1 5DD, Avon, England
来源
2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP | 2023年
关键词
Video frame interpolation; model compression; knowledge distillation;
D O I
10.1109/ICIP49359.2023.10222892
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Currently, one of the major challenges in deep learning-based video frame interpolation (VFI) is the large model size and high computational complexity associated with many high performance VFI approaches. In this paper, we present a distillation-based two-stage workflow for obtaining compressed VFI models which perform competitively compared to the state of the art, but with significantly reduced model size and complexity. Specifically, an optimisation-based network pruning method is applied to a state of the art frame interpolation model, ST-MFNet, which suffers from large model size. The resulting network architecture achieves a 91% reduction in parameter numbers and a 35% increase in speed. The performance of the new network is further enhanced through a teacher-student knowledge distillation training process using a Laplacian distillation loss. The final low complexity model, ST-MFNet Mini, achieves a comparable performance to most existing high-complexity VFI methods, only outperformed by the original ST-MFNet. Our source code is available at https://github.com/crispianm/ST-MFNet-Mini
引用
收藏
页码:1045 / 1049
页数:5
相关论文
共 33 条
[1]   Depth-Aware Video Frame Interpolation [J].
Bao, Wenbo ;
Lai, Wei-Sheng ;
Ma, Chao ;
Zhang, Xiaoyun ;
Gao, Zhiyong ;
Yang, Ming-Hsuan .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3698-3707
[2]   MEMC-Net: Motion Estimation and Motion Compensation Driven Neural Network for Video Interpolation and Enhancement [J].
Bao, Wenbo ;
Lai, Wei-Sheng ;
Zhang, Xiaoyun ;
Gao, Zhiyong ;
Yang, Ming-Hsuan .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (03) :933-948
[3]  
Chen T., 2020, ARXIV201104868
[4]   Orthant Based Proximal Stochastic Gradient Method for l1-Regularized Optimization [J].
Chen, Tianyi ;
Ding, Tianyu ;
Ji, Bo ;
Wang, Guanyi ;
Shi, Yixin ;
Tian, Jing ;
Yi, Sheng ;
Tu, Xiao ;
Zhu, Zhihui .
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2020, PT III, 2021, 12459 :57-73
[5]  
Cheng Xianhang, 2021, IEEE T PATTERN ANAL
[6]  
Choi M, 2020, AAAI CONF ARTIF INTE, V34, P10663
[7]   ENHANCING DEFORMABLE CONVOLUTION BASED VIDEO FRAME INTERPOLATION WITH COARSE-TO-FINE 3D CNN [J].
Danier, Duolikun ;
Zhang, Fan ;
Bull, David .
2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, :1396-1400
[8]   ST-MFNet: A Spatio-Temporal Multi-Flow Network for Frame Interpolation [J].
Danier, Duolikun ;
Zhang, Fan ;
Bull, David .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :3511-3521
[9]  
Dong J., 2022, ACM T MULTIMEDIA COM
[10]  
Fourure Damien, 2017, P BRIT MACH VIS C