Grain boundary alloying segregation to resist hydrogen embrittlement in BCC-Fe steels: Atomistic insights into solute-hydrogen interactions

被引:5
作者
Zhang, Boning [1 ,2 ]
Xiong, Kai [1 ]
Wang, Maoqiu [3 ]
Liu, Zhenbao [3 ]
Shen, Kun [4 ]
Mao, Yong [1 ]
Chen, Hao [2 ]
机构
[1] Yunnan Univ, Mat Genome Inst, Sch Mat & Energy, Kunming 650091, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, Key Lab Adv Mat, Minist Educ, Beijing 100084, Peoples R China
[3] Cent Iron & Steel Res Inst Co Ltd, Beijing 100081, Peoples R China
[4] China Univ Geosci, Sch Sci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Grain boundary; Segregation; First-principles calculation; Hydrogen trapping; Hydrogen embrittlement; ENHANCED DECOHESION; STRENGTH; 1ST-PRINCIPLES; CRACKING; IRON; ENVIRONMENT; MECHANISM; ELEMENTS; METALS; CR;
D O I
10.1016/j.scriptamat.2023.115757
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Grain boundary (GB) segregation of alloying elements is widely recognized to influence the mechanical properties of metallic materials. However, the rational utilization of GBs' chemical heterogeneity to mitigate hydrogen embrittlement (HE) remains challenging. Here, we employ comprehensive first-principles calculations to investigate solute-hydrogen interactions across five distinct GBs. The calculations provide fundamental insights into H concentration, transport, and induced decohesion at BCC-Fe sigma 5 (013)[100] GB with alloying segregations including W, Mo, Nb, and Mn, emphasizing the crucial importance of hydrogen adsorption energies. Through statistically identifying the effective descriptors derived from complex atomic environments of various GBs, we elucidate solute-hydrogen interaction mechanisms at GBs from broadly applicable solute valence and electronegativity factors. The analysis highlights the vital role of concurrently controlling alloying segregation tendency, GB separation work, and local H solubilities, thereby comprehending GB engineering strategies and facilitating design of high-performance alloys with GBs resistant to HE.
引用
收藏
页数:6
相关论文
共 55 条
  • [21] Kantner C.D., 2002, Designing Strength, Toughness, and Hydrogen Resistance: Quantum steel, P49
  • [22] Effect of alloying elements on hydrogen enhanced decohesion in bcc iron
    Kholtobina, Anastasiia S.
    Ecker, Werner
    Pippan, Reinhard
    Razumovskiy, Vsevolod, I
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2021, 188
  • [23] STEADY-STATE HYDROGEN TRANSPORT THROUGH ZONE REFINED IRONS
    KUMNICK, AJ
    JOHNSON, HH
    [J]. METALLURGICAL TRANSACTIONS, 1975, A 6 (05): : 1087 - 1091
  • [24] Modeling grain boundary segregation by prediction of all the necessary parameters
    Lejcek, Pavel
    Hofmann, Siegfried
    [J]. ACTA MATERIALIA, 2019, 170 : 253 - 267
  • [25] McLean D., 1957, Grain Boundaries in Metals, VFirst
  • [26] General-purpose neural network interatomic potential for the α-iron and hydrogen binary system: Toward atomic-scale understanding of hydrogen embrittlement
    Meng, Fan-Shun
    Du, Jun-Ping
    Shinzato, Shuhei
    Mori, Hideki
    Yu, Peijun
    Matsubara, Kazuki
    Ishikawa, Nobuyuki
    Ogata, Shigenobu
    [J]. PHYSICAL REVIEW MATERIALS, 2021, 5 (11):
  • [27] HYDROGEN EMBRITTLEMENT OF STEELS
    ORIANI, RA
    [J]. ANNUAL REVIEW OF MATERIALS SCIENCE, 1978, 8 : 327 - 357
  • [28] Meso-scale anisotropic hydrogen segregation near grain-boundaries in polycrystalline nickel characterized by EBSD/SIMS
    Oudriss, A.
    LeGuernic, S.
    Wang, Z.
    Hoch, B. Osman
    Bouhattate, J.
    Conforto, E.
    Zhu, Z.
    Li, D. S.
    Feaugas, X.
    [J]. MATERIALS LETTERS, 2016, 165 : 217 - 222
  • [29] The diffusion and trapping of hydrogen along the grain boundaries in polycrystalline nickel
    Oudriss, A.
    Creus, J.
    Bouhattate, J.
    Savall, C.
    Peraudeau, B.
    Feaugas, X.
    [J]. SCRIPTA MATERIALIA, 2012, 66 (01) : 37 - 40