Process engineering of natural killer cell-based immunotherapy

被引:7
作者
Motallebnejad, Pedram [1 ]
Kantardjieff, Anne [2 ]
Cichocki, Frank [3 ]
Azarin, Samira M. [1 ]
Hu, Wei-Shou [1 ]
机构
[1] Univ Minnesota, Dept Chem Engn & Mat Sci, Minneapolis, MN 55455 USA
[2] Bluebird Bio, Cambridge, MA 02142 USA
[3] Univ Minnesota, Dept Med, Minneapolis, MN 55455 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
ADAPTIVE NK CELLS; VIVO; EXPANSION; THERAPY; STEM; PERSISTENCE; ACTIVATION; GENERATION; CHILDREN; QUALITY;
D O I
10.1016/j.tibtech.2023.03.018
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cell therapy offers the potential for curative treatment of cancers. Although T cells have been the predominantly used cell type, natural killer (NK) cells have attracted great attention owing to their ability to kill cancer cells and because they are naturally suitable for allogeneic applications. Upon stimulation by cytokines or activation by a target cell, NK cells proliferate and expand their population. These cytotoxic NK cells can be cryopreserved and used as an off-the-shelf medicine. The production process for NK cells thus differs from that of autologous cell therapies. We briefly outline key biological features of NK cells, review the manufacturing technologies for protein biologics, and discuss their adaptation for developing robust NK cell biomanufacturing processes.
引用
收藏
页码:1314 / 1326
页数:13
相关论文
共 82 条
[1]   Defining Process Design Space for Monoclonal Antibody Cell Culture [J].
Abu-Absi, Susan Fugett ;
Yang, LiYing ;
Thompson, Patrick ;
Jiang, Canping ;
Kandula, Sunitha ;
Schilling, Bernhard ;
Shukla, Abhinav A. .
BIOTECHNOLOGY AND BIOENGINEERING, 2010, 106 (06) :894-905
[2]  
Amr Eissa L.G, 2022, A-CELL, A Case Study-Based Approach to Integrating QbD Principles in Cell-Based Therapy CMC Programs
[3]   Practical NK cell phenotyping and variability in healthy adults [J].
Angelo, Laura S. ;
Banerjee, Pinaki P. ;
Monaco-Shawver, Linda ;
Rosen, Joshua B. ;
Makedonas, George ;
Forbes, Lisa R. ;
Mace, Emily M. ;
Orange, Jordan S. .
IMMUNOLOGIC RESEARCH, 2015, 62 (03) :341-356
[4]   The NK cell-cancer cycle: advances and new challenges in NK cell-based immunotherapies [J].
Bald, Tobias ;
Krummel, Matthew F. ;
Smyth, Mark J. ;
Barry, Kevin C. .
NATURE IMMUNOLOGY, 2020, 21 (08) :835-847
[5]   Application of Raman Spectroscopy and Univariate Modelling As a Process Analytical Technology for Cell Therapy Bioprocessing [J].
Baradez, Marc-Olivier ;
Biziato, Daniela ;
Hassan, Enas ;
Marshall, Damian .
FRONTIERS IN MEDICINE, 2018, 5
[6]   The Natural Cytotoxicity Receptors in Health and Disease [J].
Barrow, Alexander David ;
Martin, Claudia Jane ;
Colonna, Marco .
FRONTIERS IN IMMUNOLOGY, 2019, 10
[7]   Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture [J].
Berry, Brandon N. ;
Dobrowsky, Terrence M. ;
Timson, Rebecca C. ;
Kshirsagar, Rashmi ;
Ryll, Thomas ;
Wiltberger, Kelly .
BIOTECHNOLOGY PROGRESS, 2016, 32 (01) :224-234
[8]   Mass Production of Highly Active NK Cells for Cancer Immunotherapy in a GMP Conform Perfusion Bioreactor [J].
Broeker, Katharine ;
Sinelnikov, Evgeny ;
Gustavus, Dirk ;
Schumacher, Udo ;
Poertner, Ralf ;
Hoffmeister, Hans ;
Lueth, Stefan ;
Dammermann, Werner .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2019, 7
[9]   Improving culture performance and antibody production in CHO cell culture processes by reducing the Warburg effect [J].
Buchsteiner, Maria ;
Quek, Lake-Ee ;
Gray, Peter ;
Nielsen, Lars K. .
BIOTECHNOLOGY AND BIOENGINEERING, 2018, 115 (09) :2315-2327
[10]   Differential effects on natural killer cell production by membrane-bound cytokine stimulations [J].
Chang, Meiping ;
Tang, Xiaoyan ;
Nelson, Luke ;
Nyberg, Gregg ;
Du, Zhimei .
BIOTECHNOLOGY AND BIOENGINEERING, 2022, 119 (07) :1820-1838