Anomaly Detection for Dynamic Human-Robot Assembly

被引:3
作者
Schirmer, Fabian [1 ]
Kranz, Philipp [1 ]
Schmitt, Jan [1 ]
Kaupp, Tobias [1 ]
机构
[1] Tech Univ Appl Sci, Inst Digital Engn, Wiirzburg Schweinfurt, Germany
来源
COMPANION OF THE ACM/IEEE INTERNATIONAL CONFERENCE ON HUMAN-ROBOT INTERACTION, HRI 2023 | 2023年
关键词
Human robot collaboration; human action recognition; LSTM-based autoencoder; dynamic assembly sequence;
D O I
10.1145/3568294.3580208
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human action recognition is one of the key challenges in humanrobot collaboration (HRC), especially when the process has multiple valid ways to assemble a product. To address this problem, we developed an anomaly detection framework for the assembly of complex products. We used an Long-Short-Term-Memory (LSTM)-based autoencoder to detect anomalies in human behavior and post-process the output to categorize it as a green or red anomaly. A green anomaly represents a deviation from the intended order but a valid assembly sequence. A red anomaly represents an invalid sequence. In both cases, the worker is guided to complete the assembly process.
引用
收藏
页码:881 / 883
页数:3
相关论文
共 2 条
[1]   Human Pose Estimation using Body Parts Dependent Joint Regressors [J].
Dantone, Matthias ;
Gall, Juergen ;
Leistner, Christian ;
Van Gool, Luc .
2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, :3041-3048
[2]  
Lugaresi C, 2019, Arxiv, DOI [arXiv:1906.08172, DOI 10.48550/ARXIV.1906.08172]