Finite-temperature ferromagnetic transition in coherently coupled Bose gases

被引:1
|
作者
Roy, Arko [1 ,2 ,3 ]
Ota, Miki [1 ,2 ]
Dalfovo, Franco [1 ,2 ]
Recati, Alessio [1 ,2 ,4 ]
机构
[1] Univ Trento, Pitaevskii BEC Ctr, CNR, INO, Via Sommar 14, I-38123 Trento, Italy
[2] Univ Trento, Dipartimento Fis, Via Sommar 14, I-38123 Trento, Italy
[3] Indian Inst Technol Mandi, Sch Phys Sci, Mandi 175075, HP, India
[4] INFN, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Italy
关键词
GROSS-PITAEVSKII EQUATION; DYNAMICS; MIXTURES; CONDENSATION; SEPARATION;
D O I
10.1103/PhysRevA.107.043301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A paramagnetic-ferromagnetic quantum phase transition is known to occur at zero temperature in a twodimensional coherently coupled Bose mixture of dilute ultracold atomic gases provided the interspecies interaction strength is large enough. Here we study the fate of such a transition at finite temperature by performing numerical simulations with the stochastic (projected) Gross-Pitaevskii formalism, which includes both thermal and beyond mean-field effects. By extracting the average magnetization, the magnetic fluctuations and characteristic relaxation frequency (or critical slowing down), we identify a finite-temperature critical line for the transition. We find that the critical point shifts linearly with temperature and, in addition, the three quantities used to probe the transition exhibit a temperature power-law scaling. The scaling of the critical slowing down is found to be consistent with thermal critical exponents and is very well approximated by the square of the spin excitation gap at zero temperature.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Time-of-flight expansion of binary Bose-Einstein condensates at finite temperature
    Lee, K. L.
    Jorgensen, N. B.
    Wacker, L. J.
    Skou, M. G.
    Skalmstang, K. T.
    Arlt, J. J.
    Proukakis, N. P.
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [32] Finite-temperature theory of superfluid bosons in optical lattices
    Baillie, D.
    Blakie, P. B.
    PHYSICAL REVIEW A, 2009, 80 (03):
  • [33] Efficient Simulation of Finite-Temperature Open Quantum Systems
    Tamascelli, D.
    Smirne, A.
    Lim, J.
    Huelga, S. F.
    Plenio, M. B.
    PHYSICAL REVIEW LETTERS, 2019, 123 (09)
  • [34] Baryon spectrum in a finite-temperature AdS/QCD model
    Li, Zhi
    Ma, Bo-Qiang
    PHYSICAL REVIEW D, 2014, 89 (01):
  • [35] Critical Temperature of Interacting Bose Gases in Periodic Potentials
    Nguyen, T. T.
    Herrmann, A. J.
    Troyer, M.
    Pilati, S.
    PHYSICAL REVIEW LETTERS, 2014, 112 (17)
  • [36] Kinetic model of trapped finite-temperature binary condensates
    Edmonds, M. J.
    Lee, K. L.
    Proukakis, N. P.
    PHYSICAL REVIEW A, 2015, 91 (01):
  • [37] Finite-temperature spectroscopy of dirty helical Luttinger liquids
    Hsieh, Tzu-Chi
    Chou, Yang-Zhi
    Radzihovsky, Leo
    PHYSICAL REVIEW B, 2020, 102 (08)
  • [38] Semi-implicit finite-difference methods to study the spin-orbit- and coherently-coupled spinor Bose-Einstein condensates
    Banger, Paramjeet
    Kaur, Pardeep
    Gautam, Sandeep
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2022, 33 (04):
  • [39] Weakly interacting Bose mixtures at finite temperature
    Van Schaeybroeck, Bert
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (17) : 3806 - 3811
  • [40] Ground state properties of anti-ferromagnetic spinor Bose gases in one dimension
    Hao, Yajiang
    EUROPEAN PHYSICAL JOURNAL D, 2017, 71 (03)