Finite-temperature ferromagnetic transition in coherently coupled Bose gases

被引:1
|
作者
Roy, Arko [1 ,2 ,3 ]
Ota, Miki [1 ,2 ]
Dalfovo, Franco [1 ,2 ]
Recati, Alessio [1 ,2 ,4 ]
机构
[1] Univ Trento, Pitaevskii BEC Ctr, CNR, INO, Via Sommar 14, I-38123 Trento, Italy
[2] Univ Trento, Dipartimento Fis, Via Sommar 14, I-38123 Trento, Italy
[3] Indian Inst Technol Mandi, Sch Phys Sci, Mandi 175075, HP, India
[4] INFN, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Italy
关键词
GROSS-PITAEVSKII EQUATION; DYNAMICS; MIXTURES; CONDENSATION; SEPARATION;
D O I
10.1103/PhysRevA.107.043301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A paramagnetic-ferromagnetic quantum phase transition is known to occur at zero temperature in a twodimensional coherently coupled Bose mixture of dilute ultracold atomic gases provided the interspecies interaction strength is large enough. Here we study the fate of such a transition at finite temperature by performing numerical simulations with the stochastic (projected) Gross-Pitaevskii formalism, which includes both thermal and beyond mean-field effects. By extracting the average magnetization, the magnetic fluctuations and characteristic relaxation frequency (or critical slowing down), we identify a finite-temperature critical line for the transition. We find that the critical point shifts linearly with temperature and, in addition, the three quantities used to probe the transition exhibit a temperature power-law scaling. The scaling of the critical slowing down is found to be consistent with thermal critical exponents and is very well approximated by the square of the spin excitation gap at zero temperature.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Projected Gross-Pitaevskii equation theory of finite-temperature collective modes for a trapped Bose gas
    Bezett, A.
    Blakie, P. B.
    PHYSICAL REVIEW A, 2009, 79 (02):
  • [22] Signature of the existence of a coherently condensed state in a dilute gas above the Bose-Einstein-condensate transition temperature
    Yang, Yinbiao
    Wang, Wen-ge
    PHYSICAL REVIEW A, 2015, 91 (01):
  • [23] Confinement and precession of vortex pairs in coherently coupled Bose-Einstein condensates
    Tylutki, Marek
    Pitaevskii, Lev P.
    Recati, Alessio
    Stringari, Sandro
    PHYSICAL REVIEW A, 2016, 93 (04)
  • [24] Finite-temperature dynamics of a single vortex in a Bose-Einstein condensate: Equilibrium precession and rotational symmetry breaking
    Wright, T. M.
    Bradley, A. S.
    Ballagh, R. J.
    PHYSICAL REVIEW A, 2009, 80 (05):
  • [25] A finite-time quantum Otto engine with tunnel coupled one-dimensional Bose gases
    Nautiyal, V. V.
    Watson, R. S.
    Kheruntsyan, K., V
    NEW JOURNAL OF PHYSICS, 2024, 26 (06):
  • [26] Finite-temperature crossovers in periodic disordered systems
    Foini, L.
    Giamarchi, T.
    PHYSICAL REVIEW E, 2015, 91 (03)
  • [27] Finite-temperature phase diagram of quasi-two-dimensional imbalanced Fermi gases beyond mean field
    Resende, M. A.
    Mota, A. L.
    Farias, R. L. S.
    Caldas, Heron
    PHYSICAL REVIEW A, 2012, 86 (03):
  • [28] On finite-temperature holographic QCD in the Veneziano limit
    Alho, T.
    Jaervinen, M.
    Kajantie, K.
    Kiritsis, E.
    Tuominen, K.
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (01):
  • [29] Second-order number-conserving description of nonequilibrium dynamics in finite-temperature Bose-Einstein condensates
    Billam, T. P.
    Mason, P.
    Gardiner, S. A.
    PHYSICAL REVIEW A, 2013, 87 (03):
  • [30] Spin-orbit-coupled mean-field Bose gas at finite temperature
    Jakubczyk, Pawel
    Napiorkowski, Marek
    PHYSICAL REVIEW A, 2024, 110 (05)