Finite-temperature ferromagnetic transition in coherently coupled Bose gases

被引:1
|
作者
Roy, Arko [1 ,2 ,3 ]
Ota, Miki [1 ,2 ]
Dalfovo, Franco [1 ,2 ]
Recati, Alessio [1 ,2 ,4 ]
机构
[1] Univ Trento, Pitaevskii BEC Ctr, CNR, INO, Via Sommar 14, I-38123 Trento, Italy
[2] Univ Trento, Dipartimento Fis, Via Sommar 14, I-38123 Trento, Italy
[3] Indian Inst Technol Mandi, Sch Phys Sci, Mandi 175075, HP, India
[4] INFN, Trento Inst Fundamental Phys & Applicat, I-38123 Povo, Italy
关键词
GROSS-PITAEVSKII EQUATION; DYNAMICS; MIXTURES; CONDENSATION; SEPARATION;
D O I
10.1103/PhysRevA.107.043301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A paramagnetic-ferromagnetic quantum phase transition is known to occur at zero temperature in a twodimensional coherently coupled Bose mixture of dilute ultracold atomic gases provided the interspecies interaction strength is large enough. Here we study the fate of such a transition at finite temperature by performing numerical simulations with the stochastic (projected) Gross-Pitaevskii formalism, which includes both thermal and beyond mean-field effects. By extracting the average magnetization, the magnetic fluctuations and characteristic relaxation frequency (or critical slowing down), we identify a finite-temperature critical line for the transition. We find that the critical point shifts linearly with temperature and, in addition, the three quantities used to probe the transition exhibit a temperature power-law scaling. The scaling of the critical slowing down is found to be consistent with thermal critical exponents and is very well approximated by the square of the spin excitation gap at zero temperature.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Coherently coupled Bose gases
    Recati, A.
    QUANTUM MATTER AT ULTRALOW TEMPERATURES, 2016, 191 : 463 - 483
  • [2] Comparison between microscopic methods for finite-temperature Bose gases
    Cockburn, S. P.
    Negretti, A.
    Proukakis, N. P.
    Henkel, C.
    PHYSICAL REVIEW A, 2011, 83 (04)
  • [3] Observable vortex properties in finite-temperature Bose gases
    Allen, A. J.
    Zaremba, E.
    Barenghi, C. F.
    Proukakis, N. P.
    PHYSICAL REVIEW A, 2013, 87 (01):
  • [4] Ab initio methods for finite-temperature two-dimensional Bose gases
    Cockburn, S. P.
    Proukakis, N. P.
    PHYSICAL REVIEW A, 2012, 86 (03):
  • [5] Critical velocity for vortex nucleation in a finite-temperature Bose gas
    Stagg, G. W.
    Pattinson, R. W.
    Barenghi, C. F.
    Parker, N. G.
    PHYSICAL REVIEW A, 2016, 93 (02)
  • [6] Equilibration of a finite-temperature binary Bose gas formed by population transfer
    Pattinson, R. W.
    Proukakis, N. P.
    Parker, N. G.
    PHYSICAL REVIEW A, 2014, 90 (03):
  • [7] Anomalous density for Bose gases at finite temperature
    Boudjemaa, A.
    Benarous, M.
    PHYSICAL REVIEW A, 2011, 84 (04)
  • [8] Finite-temperature hydrodynamics for one-dimensional Bose gases: Breathing-mode oscillations as a case study
    Bouchoule, I.
    Szigeti, S. S.
    Davis, M. J.
    Kheruntsyan, K. V.
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [9] Thermofield Theory for Finite-Temperature Coupled Cluster
    Harsha, Gaurav
    Henderson, Thomas M.
    Scuseria, Gustavo E.
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2019, 15 (11) : 6127 - 6136
  • [10] Finite-temperature vortex dynamics in Bose-Einstein condensates
    Jackson, B.
    Proukakis, N. P.
    Barenghi, C. F.
    Zaremba, E.
    PHYSICAL REVIEW A, 2009, 79 (05)