DPDH-CapNet: A Novel Lightweight Capsule Network with Non-routing for COVID-19 Diagnosis Using X-ray Images

被引:4
作者
Yuan, Jianjun [1 ]
Wu, Fujun [1 ]
Li, Yuxi [1 ]
Li, Jinyi [1 ]
Huang, Guojun [1 ]
Huang, Quanyong [2 ]
机构
[1] Southwest Univ, Coll Artificial Intelligence, 40075, Chongqing, Peoples R China
[2] Wuhan Univ Sci & Technol, Coll Machinery & Automat, Heping Ave 947, Wuhan 430091, Hubei, Peoples R China
关键词
COVID-19; Capsule networks; Chest X-ray images; Homogeneous vector capsules; CORONAVIRUS;
D O I
10.1007/s10278-023-00791-3
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
COVID-19 has claimed millions of lives since its outbreak in December 2019, and the damage continues, so it is urgent to develop new technologies to aid its diagnosis. However, the state-of-the-art deep learning methods often rely on large-scale labeled data, limiting their clinical application in COVID-19 identification. Recently, capsule networks have achieved highly competitive performance for COVID-19 detection, but they require expensive routing computation or traditional matrix multiplication to deal with the capsule dimensional entanglement. A more lightweight capsule network is developed to effectively address these problems, namely DPDH-CapNet, which aims to enhance the technology of automated diagnosis for COVID-19 chest X-ray images. It adopts depthwise convolution (D), point convolution (P), and dilated convolution (D) to construct a new feature extractor, thus successfully capturing the local and global dependencies of COVID-19 pathological features. Simultaneously, it constructs the classification layer by homogeneous (H) vector capsules with an adaptive, non-iterative, and non-routing mechanism. We conduct experiments on two publicly available combined datasets, including normal, pneumonia, and COVID-19 images. With a limited number of samples, the parameters of the proposed model are reduced by 9x compared to the state-of-the-art capsule network. Moreover, our model has faster convergence speed and better generalization, and its accuracy, precision, recall, and F-measure are improved to 97.99%, 98.05%, 98.02%, and 98.03%, respectively. In addition, experimental results demonstrate that, contrary to the transfer learning method, the proposed model does not require pre-training and a large number of training samples.
引用
收藏
页码:988 / 1000
页数:13
相关论文
共 44 条
[1]   Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network [J].
Abbas, Asmaa ;
Abdelsamea, Mohammed M. ;
Gaber, Mohamed Medhat .
APPLIED INTELLIGENCE, 2021, 51 (02) :854-864
[2]   Computer-aided detection of COVID-19 from X-ray images using multi-CNN and Bayesnet classifier [J].
Abraham, Bejoy ;
Nair, Madhu S. .
BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2020, 40 (04) :1436-1445
[3]  
Adu Kwabena, 2019, 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO), P942, DOI 10.1109/ROBIO49542.2019.8961610
[4]   COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images [J].
Afshar, Parnian ;
Heidarian, Shahin ;
Naderkhani, Farnoosh ;
Oikonomou, Anastasia ;
Plataniotis, Konstantinos N. ;
Mohammadi, Arash .
PATTERN RECOGNITION LETTERS, 2020, 138 :638-643
[5]   Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks [J].
Apostolopoulos, Ioannis D. ;
Mpesiana, Tzani A. .
PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2020, 43 (02) :635-640
[6]   Grad-CAM plus plus : Generalized Gradient-based Visual Explanations for Deep Convolutional Networks [J].
Chattopadhay, Aditya ;
Sarkar, Anirban ;
Howlader, Prantik ;
Balasubramanian, Vineeth N. .
2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, :839-847
[7]  
Choi J., 2019, P IEEECVF INT C COMP
[8]   Can AI Help in Screening Viral and COVID-19 Pneumonia? [J].
Chowdhury, Muhammad E. H. ;
Rahman, Tawsifur ;
Khandakar, Amith ;
Mazhar, Rashid ;
Kadir, Muhammad Abdul ;
Bin Mahbub, Zaid ;
Islam, Khandakar Reajul ;
Khan, Muhammad Salman ;
Iqbal, Atif ;
Al Emadi, Nasser ;
Reaz, Mamun Bin Ibne ;
Islam, Mohammad Tariqul .
IEEE ACCESS, 2020, 8 :132665-132676
[9]  
Cohen J., 2020, COVID CHEST XRAY DAT
[10]   AI for radiographic COVID-19 detection selects shortcuts over signal [J].
DeGrave, Alex J. ;
Janizek, Joseph D. ;
Lee, Su-In .
NATURE MACHINE INTELLIGENCE, 2021, 3 (07) :610-619