A colonial serrated polyp classification model using white-light ordinary endoscopy images with an artificial intelligence model and TensorFlow chart

被引:2
作者
Chen, Tsung-Hsing [1 ,2 ]
Wang, Yu-Tzu [3 ]
Wu, Chi-Huan [1 ,2 ]
Kuo, Chang-Fu [4 ,5 ,6 ]
Cheng, Hao-Tsai [1 ,2 ,7 ,8 ]
Huang, Shu-Wei [1 ,2 ,7 ]
Lee, Chieh [9 ]
机构
[1] Chang Gung Mem Hosp, Linkou Med Ctr, Dept Gastroenterol & Hepatol, Taoyuan, Taiwan
[2] Chang Gung Univ, Coll Med, Taoyuan, Taiwan
[3] Business Futures Co LTD, Tokyo, Japan
[4] Chang Gung Mem Hosp Linkou, Div Rheumatol Allergy & Immunol, Taoyuan, Taiwan
[5] Chang Gung Univ, Coll Med, Taoyuan, Taiwan
[6] Chang Gung Mem Hosp, Ctr Artificial Intelligence Med, Taoyuan, Taiwan
[7] New Taipei Municipal TuCheng Hosp, Dept Internal Med, Div Gastroenterol & Hepatol, New Taipei City, Taiwan
[8] Chang Gung Univ, Grad Inst Clin Med Sci, Coll Med, Taoyuan City, Taiwan
[9] Natl Sun Yat Sen Univ, Dept Informat Management, Coll Management, Kaohsiung, Taiwan
关键词
Colonial polyps; Serrated-type colon polyps; Artificial intelligence; Classification modeling;
D O I
10.1186/s12876-024-03181-3
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
In this study, we implemented a combination of data augmentation and artificial intelligence (AI) model-Convolutional Neural Network (CNN)-to help physicians classify colonic polyps into traditional adenoma (TA), sessile serrated adenoma (SSA), and hyperplastic polyp (HP). We collected ordinary endoscopy images under both white and NBI lights. Under white light, we collected 257 images of HP, 423 images of SSA, and 60 images of TA. Under NBI light, were collected 238 images of HP, 284 images of SSA, and 71 images of TA. We implemented the CNN-based artificial intelligence model, Inception V4, to build a classification model for the types of colon polyps. Our final AI classification model with data augmentation process is constructed only with white light images. Our classification prediction accuracy of colon polyp type is 94%, and the discriminability of the model (area under the curve) was 98%. Thus, we can conclude that our model can help physicians distinguish between TA, SSA, and HPs and correctly identify precancerous lesions such as TA and SSA.
引用
收藏
页数:11
相关论文
共 27 条
[1]   Deep Learning Applied to White Light and Narrow Band Imaging Videolaryngoscopy: Toward Real-Time Laryngeal Cancer Detection [J].
Azam, Muhammad Adeel ;
Sampieri, Claudio ;
Ioppi, Alessandro ;
Africano, Stefano ;
Vallin, Alberto ;
Mocellin, Davide ;
Fragale, Marco ;
Guastini, Luca ;
Moccia, Sara ;
Piazza, Cesare ;
Mattos, Leonardo S. ;
Peretti, Giorgio .
LARYNGOSCOPE, 2022, 132 (09) :1798-1806
[2]   Deep Learning Computer-aided Polyp Detection Reduces Adenoma Miss Rate: A United States Multi-center Randomized Tandem Colonoscopy Study (CADeT-CS Trial) [J].
Brown, Jeremy R. Glissen ;
Mansour, Nabil M. ;
Wang, Pu ;
Chuchuca, Maria Aguilera ;
Minchenberg, Scott B. ;
Chandnani, Madhuri ;
Liu, Lin ;
Gross, Seth A. ;
Sengupta, Neil ;
Berzin, Tyler M. .
CLINICAL GASTROENTEROLOGY AND HEPATOLOGY, 2022, 20 (07) :1499-+
[3]  
Canziani A., 2016, arXiv, DOI 10.48550/arXiv.1605.07678
[4]  
Deng-Ping Fan, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12266), P263, DOI 10.1007/978-3-030-59725-2_26
[5]  
Dong B, 2024, Arxiv, DOI [arXiv:2108.06932, 10.26599/AIR.2023.9150015]
[6]  
East JE, 2017, Gut, pgutjnl
[7]  
Howard AG, 2017, Arxiv, DOI [arXiv:1704.04861, 10.48550/arXiv.1704.04861]
[8]   Recommendations for Follow-Up After Colonoscopy and Polypectomy: A Consensus Update by the US Multi-Society Task Force on Colorectal Cancer [J].
Gupta, Samir ;
Lieberman, David ;
Anderson, Joseph C. ;
Burke, Carol A. ;
Dominitz, Jason A. ;
Kaltenbach, Tonya ;
Robertson, Douglas J. ;
Shaukat, Aasma ;
Syngal, Sapna ;
Rex, Douglas K. .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (03) :463-+
[9]   Performance of artificial intelligence in colonoscopy for adenoma and polyp detection: a systematic review and meta-analysis [J].
Hassan, Cesare ;
Spadaccini, Marco ;
Iannone, Andrea ;
Maselli, Roberta ;
Jovani, Manol ;
Chandrasekar, Viveksandeep Thoguluva ;
Antonelli, Giulio ;
Yu, Honggang ;
Areia, Miguel ;
Dinis-Ribeiro, Mario ;
Bhandari, Pradeep ;
Sharma, Prateek ;
Rex, Douglas K. ;
Roesch, Thomas ;
Wallace, Michael ;
Repici, Alessandro .
GASTROINTESTINAL ENDOSCOPY, 2021, 93 (01) :77-+
[10]   Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images [J].
Hirasawa, Toshiaki ;
Aoyama, Kazuharu ;
Tanimoto, Tetsuya ;
Ishihara, Soichiro ;
Shichijo, Satoki ;
Ozawa, Tsuyoshi ;
Ohnishi, Tatsuya ;
Fujishiro, Mitsuhiro ;
Matsuo, Keigo ;
Fujisaki, Junko ;
Tada, Tomohiro .
GASTRIC CANCER, 2018, 21 (04) :653-660