HDIQA: A Hyper Debiasing Framework for Full Reference Image Quality Assessment

被引:6
|
作者
Zhou, Mingliang [1 ]
Wang, Heqiang [1 ]
Wei, Xuekai [1 ]
Feng, Yong [1 ]
Luo, Jun [2 ]
Pu, Huayan [2 ]
Zhao, Jinglei [2 ]
Wang, Liming [2 ]
Chu, Zhigang [2 ]
Wang, Xin [2 ,3 ]
Fang, Bin [1 ]
Shang, Zhaowei [1 ]
机构
[1] Chongqing Univ, Sch Comp Sci, Chongqing 400044, Peoples R China
[2] Chongqing Univ, Sch Mech & Vehicle Engn, Chongqing 400044, Peoples R China
[3] Chongqing Changan Automobile Co Ltd, Prod Dept, Chongqing 400020, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Image quality; Visualization; Tensors; Task analysis; Perturbation methods; Quality assessment; Image quality assessment; deep feature; hypernetwork; Tucker decomposition; SIMILARITY; VISIBILITY;
D O I
10.1109/TBC.2024.3353573
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recent methods that project images into deep feature spaces to evaluate quality degradation have produced inefficient results due to biased mappings; i.e., these projections are not aligned with the perceptions of humans. In this paper, we develop a hyperdebiasing framework to address such bias in full-reference image quality assessment. First, we perform orthogonal Tucker decomposition on the top of feature tensors extracted by a feature extraction network to project features into a robust content-agnostic space and effectively eliminate the bias caused by subtle image perturbations. Second, we propose a hypernetwork in which the content-aware parameters are produced for reprojecting features in a deep subspace for quality prediction. By leveraging the content diversity of large-scale blind-reference datasets, the perception rule between image content and image quality is established. Third, a quality prediction network is proposed by combining debiased content-aware and content-agnostic features to predict the final image quality score. To demonstrate the efficacy of our proposed method, we conducted numerous experiments on comprehensive databases. The experimental results validate that our method achieves state-of-the-art performance in predicting image quality.
引用
收藏
页码:545 / 554
页数:10
相关论文
共 50 条
  • [1] EDDMF: An Efficient Deep Discrepancy Measuring Framework for Full-Reference Light Field Image Quality Assessment
    Zhang, Zhengyu
    Tian, Shishun
    Zou, Wenbin
    Morin, Luce
    Zhang, Lu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 6426 - 6440
  • [2] A Full-Reference Image Quality Assessment Method via Deep Meta-Learning and Conformer
    Lang, Shujun
    Liu, Xu
    Zhou, Mingliang
    Luo, Jun
    Pu, Huayan
    Zhuang, Xu
    Wang, Jason
    Wei, Xuekai
    Zhang, Taiping
    Feng, Yong
    Shang, Zhaowei
    IEEE TRANSACTIONS ON BROADCASTING, 2024, 70 (01) : 316 - 324
  • [3] UNIFYING ANALYSIS OF FULL REFERENCE IMAGE QUALITY ASSESSMENT
    Seshadrinathan, Kalpana
    Bovik, Alan C.
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 1200 - 1203
  • [4] Graph-Represented Distribution Similarity Index for Full-Reference Image Quality Assessment
    Shen, Wenhao
    Zhou, Mingliang
    Luo, Jun
    Li, Zhengguo
    Kwong, Sam
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 3075 - 3089
  • [5] A novel discrete wavelet transform framework for full reference image quality assessment
    Soroosh Rezazadeh
    Stéphane Coulombe
    Signal, Image and Video Processing, 2013, 7 : 559 - 573
  • [6] A novel discrete wavelet transform framework for full reference image quality assessment
    Rezazadeh, Soroosh
    Coulombe, Stephane
    SIGNAL IMAGE AND VIDEO PROCESSING, 2013, 7 (03) : 559 - 573
  • [7] Deep Ordinal Regression Framework for No-Reference Image Quality Assessment
    Wang, Huasheng
    Tu, Yulin
    Liu, Xiaochang
    Tan, Hongchen
    Liu, Hantao
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 428 - 432
  • [8] Towards Thousands to One Reference: Can We Trust the Reference Image for Quality Assessment?
    Tian, Yu
    Chen, Baoliang
    Wang, Shiqi
    Kwong, Sam
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 3278 - 3290
  • [9] A No-Reference and Full-Reference image quality assessment and enhancement framework in real-time
    Zahi Al Chami
    Chady Abou Jaoude
    Richard Chbeir
    Mahmoud Barhamgi
    Mansour Naser Alraja
    Multimedia Tools and Applications, 2022, 81 : 32491 - 32517
  • [10] A No-Reference and Full-Reference image quality assessment and enhancement framework in real-time
    Al Chami, Zahi
    Abou Jaoude, Chady
    Chbeir, Richard
    Barhamgi, Mahmoud
    Alraja, Mansour Naser
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (22) : 32491 - 32517