Hybrid deep multi-task learning radiomics approach for predicting EGFR mutation status of non-small cell lung cancer in CT images

被引:6
作者
Gong, Jing [1 ,2 ]
Fu, Fangqiu [2 ,3 ,4 ]
Ma, Xiaowen [1 ,2 ]
Wang, Ting [1 ,2 ]
Ma, Xiangyi [2 ,3 ,4 ]
You, Chao [1 ,2 ]
Zhang, Yang [2 ,3 ,4 ]
Peng, Weijun [1 ,2 ]
Chen, Haiquan [2 ,3 ,4 ]
Gu, Yajia [1 ,2 ]
机构
[1] Fudan Univ, Dept Radiol, Shanghai Canc Ctr, 270 Dongan Rd, Shanghai 20003, Peoples R China
[2] Fudan Univ, Shanghai Med Coll, Dept Oncol, Shanghai 200032, Peoples R China
[3] Fudan Univ, Dept Thorac Surg, Shanghai Canc Ctr, Shanghai 200032, Peoples R China
[4] Fudan Univ, State key Lab Genet Engn, Shanghai Canc Ctr, Shanghai 200032, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
non-small cell lung cancer; CT image; EGFR mutation; deep learning; radiomics; OSIMERTINIB; FEATURES; THERAPY;
D O I
10.1088/1361-6560/ad0d43
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Epidermal growth factor receptor (EGFR) mutation genotyping plays a pivotal role in targeted therapy for non-small cell lung cancer (NSCLC). We aimed to develop a computed tomography (CT) image-based hybrid deep radiomics model to predict EGFR mutation status in NSCLC and investigate the correlations between deep image and quantitative radiomics features. Approach. First, we retrospectively enrolled 818 patients from our centre and 131 patients from The Cancer Imaging Archive database to establish a training cohort (N = 654), an independent internal validation cohort (N = 164) and an external validation cohort (N = 131). Second, to predict EGFR mutation status, we developed three CT image-based models, namely, a multi-task deep neural network (DNN), a radiomics model and a feature fusion model. Third, we proposed a hybrid loss function to train the DNN model. Finally, to evaluate the model performance, we computed the areas under the receiver operating characteristic curves (AUCs) and decision curve analysis curves of the models. Main results. For the two validation cohorts, the feature fusion model achieved AUC values of 0.86 +/- 0.03 and 0.80 +/- 0.05, which were significantly higher than those of the single-task DNN and radiomics models (all P < 0.05). There was no significant difference between the feature fusion and the multi-task DNN models (P > 0.8). The binary prediction scores showed excellent prognostic value in predicting disease-free survival (P = 0.02) and overall survival (P < 0.005) for validation cohort 2. Significance. The results demonstrate that (1) the feature fusion and multi-task DNN models achieve significantly higher performance than that of the conventional radiomics and single-task DNN models, (2) the feature fusion model can decode the imaging phenotypes representing NSCLC heterogeneity related to both EGFR mutation and patient NSCLC prognosis, and (3) high correlations exist between some deep image and radiomics features.
引用
收藏
页数:13
相关论文
共 36 条
[1]   A radiogenomic dataset of non-small cell lung cancer [J].
Bakr, Shaimaa ;
Gevaert, Olivier ;
Echegaray, Sebastian ;
Ayers, Kelsey ;
Zhou, Mu ;
Shafiq, Majid ;
Zheng, Hong ;
Benson, Jalen Anthony ;
Zhang, Weiruo ;
Leung, Ann N. C. ;
Kadoch, Michael ;
Hoang, Chuong D. ;
Shrager, Joseph ;
Quon, Andrew ;
Rubin, Daniel L. ;
Plevritis, Sylvia K. ;
Napel, Sandy .
SCIENTIFIC DATA, 2018, 5
[2]   Lung cancer mutation profile of EGFR, ALK, and KRAS: Meta-analysis and comparison of never and ever smokers [J].
Chapman, Aaron M. ;
Sun, Kathie Y. ;
Ruestow, Peter ;
Cowan, Dallas M. ;
Madl, Amy K. .
LUNG CANCER, 2016, 102 :122-134
[3]   Predicting EGFR mutation status in lung adenocarcinoma presenting as ground-glass opacity: utilizing radiomics model in clinical translation [J].
Cheng, Bo ;
Deng, Hongsheng ;
Zhao, Yi ;
Xiong, Junfeng ;
Liang, Peng ;
Li, Caichen ;
Liang, Hengrui ;
Shi, Jiang ;
Li, Jianfu ;
Xiong, Shan ;
Lai, Ting ;
Chen, Zhuxing ;
Wu, Jianrong ;
Qian, Tianyi ;
Huan, Wenjing ;
Ng, Man Tat Alexander ;
He, Jianxing ;
Liang, Wenhua .
EUROPEAN RADIOLOGY, 2022, 32 (09) :5869-5879
[4]   Multi-channel multi-task deep learning for predicting EGFR and KRAS mutations of non-small cell lung cancer on CT images [J].
Dong, Yunyun ;
Hou, Lina ;
Yang, Wenkai ;
Han, Jiahao ;
Wang, Jiawen ;
Qiang, Yan ;
Zhao, Juanjuan ;
Hou, Jiaxin ;
Song, Kai ;
Ma, Yulan ;
Kazihise, Ntikurako Guy Fernand ;
Cui, Yanfen ;
Yang, Xiaotang .
QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (06) :2354-2375
[5]   A short-term follow-up CT based radiomics approach to predict response to immunotherapy in advanced non-small-cell lung cancer [J].
Gong, Jing ;
Bao, Xiao ;
Wang, Ting ;
Liu, Jiyu ;
Peng, Weijun ;
Shi, Jingyun ;
Wu, Fengying ;
Gu, Yajia .
ONCOIMMUNOLOGY, 2022, 11 (01)
[6]   Deep Learning-Based Stage-Wise Risk Stratification for Early Lung Adenocarcinoma in CT Images: A Multi-Center Study [J].
Gong, Jing ;
Liu, Jiyu ;
Li, Haiming ;
Zhu, Hui ;
Wang, Tingting ;
Hu, Tingdan ;
Li, Menglei ;
Xia, Xianwu ;
Hu, Xianfang ;
Peng, Weijun ;
Wang, Shengping ;
Tong, Tong ;
Gu, Yajia .
CANCERS, 2021, 13 (13)
[7]   A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images [J].
Gong, Jing ;
Liu, Jiyu ;
Hao, Wen ;
Nie, Shengdong ;
Zheng, Bin ;
Wang, Shengping ;
Peng, Weijun .
EUROPEAN RADIOLOGY, 2020, 30 (04) :1847-1855
[8]   Computer-aided diagnosis of ground-glass opacity pulmonary nodules using radiomic features analysis [J].
Gong, Jing ;
Liu, Jiyu ;
Hao, Wen ;
Nie, Shengdong ;
Wang, Shengping ;
Peng, Weijun .
PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (13)
[9]   Predicting EGFR mutation status by a deep learning approach in patients with non-small cell lung cancer brain metastases [J].
Haim, Oz ;
Abramov, Shani ;
Shofty, Ben ;
Fanizzi, Claudia ;
DiMeco, Francesco ;
Avisdris, Netanell ;
Ram, Zvi ;
Artzi, Moran ;
Grossman, Rachel .
JOURNAL OF NEURO-ONCOLOGY, 2022, 157 (01) :63-69
[10]   Assessing EGFR gene mutation status in non-small cell lung cancer with imaging features from PET/CT [J].
Jiang, Mengmeng ;
Zhang, Yiqian ;
Xu, Junshen ;
Ji, Min ;
Guo, Yinglong ;
Guo, Yixian ;
Xiao, Jie ;
Yao, Xiuzhong ;
Shi, Hongcheng ;
Zeng, Mengsu .
NUCLEAR MEDICINE COMMUNICATIONS, 2019, 40 (08) :842-849