Sensorless control of a PMSM based on an RBF neural network-optimized ADRC and SGHCKF-STF algorithm

被引:2
作者
Li, Haoran [1 ]
Zhang, Rongyun [1 ]
Shi, Peicheng [2 ]
Mei, Ye [1 ]
Zheng, Kunming [1 ]
Qiu, Tian [1 ]
机构
[1] Anhui Polytech Univ, Sch Mech & Automot Engn, Beijing Middle Rd 8, Wuhu 241000, Peoples R China
[2] Anhui Polytech Univ, Automot New Technol Anhui Engn & Technol Res Ctr, Wuhu, Peoples R China
基金
中国国家自然科学基金;
关键词
Automatic disturbance rejection control (ADRC); radial basis function (RBF) neural network; generalized fifth-order cubature Kalman filter (GHCKF); orthogonal triangle (QR) decomposition; strong tracking filtering (STF); sensorless control; PREDICTIVE CONTROL; KALMAN FILTER;
D O I
10.1177/00202940231195908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For the problem of the rotor position estimation and control accuracy of permanent magnet synchronous motor (PMSM), this paper proposes a PMSM sensorless based on radial basis function (RBF) neural network optimized Automatic disturbance rejection control (RBF-ADRC) and strong tracking filter (STF) improved square root generalized fifth-order cubature Kalman filter (SGHCKF-STF). The Automatic disturbance rejection control (ADRC) has strong robustness, but there are many parameters and difficult to adjust. Now we use RBF neural network to adjust the parameters in ADRC online so as to improve the robustness and anti-disturbance ability. In order to improve the estimation accuracy of rotor position and speed, the orthogonal triangle (QR) decomposition and STF are introduced on the basis of the generalized fifth-order cubature Kalman filter (GHCKF) to design the SGHCKF-STF algorithm that not only ensure the non-positive nature of the covariance matrix but also improve the ability to cope with sudden changes in state during the filtering process. Experimental results show that the combination of RBF-ADRC and SGHCKF-STF improve the sensorless control effect of the PMSM to some extent.
引用
收藏
页码:266 / 279
页数:14
相关论文
共 25 条
[1]   Active Disturbance Rejection Control of Linear Induction Motor [J].
Alonge, Francesco ;
Cirrincione, Maurizio ;
D'Ippolito, Filippo ;
Pucci, Marcello ;
Sferlazza, Antonino .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2017, 53 (05) :4460-4471
[2]   Finite-time adaptive NN control for permanent magnet synchronous motors with full-state constraints [J].
Ding, Lusong ;
Wang, Wei ;
Yu, Yang .
NEUROCOMPUTING, 2021, 449 :435-442
[3]   An ADRC-based backstepping control design for a class of fractional-order systems [J].
Doostdar, Fatemeh ;
Mojallali, Hamed .
ISA TRANSACTIONS, 2022, 121 :140-146
[4]   Linear Active Disturbance Rejection Control for Processes With Time Delays: IMC Interpretation [J].
Fu, Caifen ;
Tan, Wen .
IEEE ACCESS, 2020, 8 (08) :16606-16617
[5]   Adaptive UKF-based model predictive control of a Fresnel collector field [J].
Gallego, Antonio J. ;
Sanchez, Adolfo J. ;
Berenguel, M. ;
Camacho, Eduardo F. .
JOURNAL OF PROCESS CONTROL, 2020, 85 :76-90
[6]   The PID and 2DOF control of the integral system-influence of the 2DOF parameters and practical implementation [J].
Guras, Radek ;
Strambersky, Radek ;
Mahdal, Miroslav .
MEASUREMENT & CONTROL, 2022, 55 (1-2) :94-101
[7]  
Hou Li-min, 2020, Electric Machines and Control, V24, P143, DOI 10.15938/j.emc.2020.06.017
[8]  
[金宁治 Jin Ningzhi], 2020, [电机与控制学报, Electric Machines and Control], V24, P35
[9]  
[李磊 Li Lei], 2020, [北京航空航天大学学报, Journal of Beijing University of Aeronautics and Astronautics], V46, P1966
[10]  
Li ZM., 2017, ACTA PHYS SINICA, V66, P277