Attitude filtering with uncertain process and measurement noise covariance using SVD-aided adaptive UKF

被引:8
作者
Hajiyev, Chingiz [1 ]
Cilden-Guler, Demet [2 ,3 ]
机构
[1] Istanbul Tech Univ, Fac Aeronaut & Astronaut, Dept Aeronaut Engn, Istanbul, Turkiye
[2] Istanbul Tech Univ, Fac Aeronaut & Astronaut, Dept Astronaut Engn, Istanbul, Turkiye
[3] Istanbul Tech Univ, Fac Aeronaut & Astronaut, Dept Astronaut Engn, TR-34469 Maslak, Istanbul, Turkiye
关键词
attitude estimation; magnetometer; multiple measurement scale factor; multiple scale factors; robust unscented Kalman filtering; single-frame estimator; Sun sensor; UNSCENTED KALMAN FILTER; CONTROL-SYSTEM; IDENTIFICATION; ALGORITHM;
D O I
10.1002/rnc.6896
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
It is presented in this article how to simultaneously alter the process and measurement noise covariance matrices for nontraditional attitude filtering technique. The unscented Kalman filter (UKF) and singular value decomposition (SVD) methods are integrated in the nontraditional attitude filtering algorithm to estimate a nanosatellite's attitude with an inherent robustness feature. The SVD approach determines the attitude of the nanosatellite and provides one estimate at a single frame utilizing measurements from the magnetometer and Sun sensor as the initial stage of the algorithm. These attitude terms are subsequently fed into the UKF with their error covariances, which makes the filter robust inherently. The attitude estimations of the satellite are compared between the filters presented. The Q (process noise covariance) adaption approach with multiple scale factors is specifically suggested for differences in between the process channels. Performance of the multiple scale factors-based adaptive SVD-aided UKF is examined in the event of process noise increase, which may result from changes in the environment or satellite dynamics.
引用
收藏
页码:10512 / 10531
页数:20
相关论文
共 42 条
[1]   International Geomagnetic Reference Field: the thirteenth generation [J].
Alken, P. ;
Thebault, E. ;
Beggan, C. D. ;
Amit, H. ;
Aubert, J. ;
Baerenzung, J. ;
Bondar, T. N. ;
Brown, W. J. ;
Califf, S. ;
Chambodut, A. ;
Chulliat, A. ;
Cox, G. A. ;
Finlay, C. C. ;
Fournier, A. ;
Gillet, N. ;
Grayver, A. ;
Hammer, M. D. ;
Holschneider, M. ;
Huder, L. ;
Hulot, G. ;
Jager, T. ;
Kloss, C. ;
Korte, M. ;
Kuang, W. ;
Kuvshinov, A. ;
Langlais, B. ;
Leger, J. -M. ;
Lesur, V. ;
Livermore, P. W. ;
Lowes, F. J. ;
Macmillan, S. ;
Magnes, W. ;
Mandea, M. ;
Marsal, S. ;
Matzka, J. ;
Metman, M. C. ;
Minami, T. ;
Morschhauser, A. ;
Mound, J. E. ;
Nair, M. ;
Nakano, S. ;
Olsen, N. ;
Pavon-Carrasco, F. J. ;
Petrov, V. G. ;
Ropp, G. ;
Rother, M. ;
Sabaka, T. J. ;
Sanchez, S. ;
Saturnino, D. ;
Schnepf, N. R. .
EARTH PLANETS AND SPACE, 2021, 73 (01)
[2]  
Alonso R, 2002, J ASTRONAUT SCI, V50, P477
[3]  
[Anonymous], 1988, SPACECRAFT ATTITUDE
[4]  
[Anonymous], 2011, Autom. Control Aerospace
[5]  
[Anonymous], 2009, Trans. Jpn. Soc. Aeronaut. Space Sci. Aerosp. Technol. Jpn., DOI DOI 10.2322/TSTJ.7.PD63
[6]   NANOSATELLITE ATTITUDE ESTIMATION FROM VECTOR MEASUREMENTS USING SVD-AIDED UKF ALGORITHM [J].
Cilden, Demet ;
Soken, Halil Ersin ;
Hajiyev, Chingiz .
METROLOGY AND MEASUREMENT SYSTEMS, 2017, 24 (01) :113-125
[7]  
Cilden D, 2015, 2015 7TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST), P695, DOI 10.1109/RAST.2015.7208431
[8]  
Cilden-Guler D., 2017, 31 INT S SPAC TECHN
[9]   A comparative study of spacecraft attitude determination and estimation algorithms (a cost-benefit approach) [J].
Habib, Tamer Mekky Ahmed .
AEROSPACE SCIENCE AND TECHNOLOGY, 2013, 26 (01) :211-215
[10]   Attitude determination and control system design of the ITU-UUBF LEO1 satellite [J].
Hajiyev, C ;
Bahar, M .
ACTA ASTRONAUTICA, 2003, 52 (2-6) :493-499