Two-fermion lattice Hamiltonian with first and second nearest-neighboring-site interactions

被引:2
作者
Lakaev, Saidakhmat N. [1 ,2 ]
Motovilov, Alexander K. [3 ,4 ]
Abdukhakimov, Saidakbar Kh [1 ,2 ]
机构
[1] Samarkand State Univ, Samarkand 140104, Uzbekistan
[2] Acad Sci Uzbek, Romanovskii Inst Math, Samarkand Branch, Samarkand 140104, Uzbekistan
[3] JINR, Bogoliubov Lab Theoret Phys, Joliot Curie 6, Dubna 141980, Russia
[4] Dubna State Univ, Univ skaya 19, Dubna 141980, Russia
关键词
two-fermion lattice Hamiltonian; nearest-neighboring-site interaction; second-nearest-neighboring-site interaction; spectral properties; SCHRODINGER-OPERATORS; BOUND-STATES; NUMBER;
D O I
10.1088/1751-8121/ace4a6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the Schrodinger operators H-lambda mu(K), with K is an element of T-2 the fixed quasimomentum of the particles pair, associated with a system of two identical fermions on the two-dimensional lattice Z(2) with first and second nearest-neighboring-site interactions of magnitudes lambda is an element of R and mu is an element of R, respectively. We establish a partition of the (lambda, mu) plane so that in each its connected component, the Schrodinger operator H-lambda mu(0) has a definite (fixed) number of eigenvalues, which are situated below the bottom of the essential spectrum and above its top. Moreover, we establish a sharp lower bound for the number of isolated eigenvalues of H-lambda mu(K) in each connected component.
引用
收藏
页数:23
相关论文
共 40 条
[1]   The threshold effects for the two-particle hamiltonians on lattices [J].
Albeverio, S ;
Lakaev, SN ;
Makarov, KA ;
Muminov, ZI .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 262 (01) :91-115
[2]  
Albeverio S, 2004, ANN HENRI POINCARE, V5, P743, DOI [10.1007/S00023-004-0181-9, 10.1007/s00023-004-0181-9]
[3]  
Albeverio S, 2012, MARKOV PROCESS RELAT, V18, P387
[4]  
Albeverio S., 1988, Solvable Models in Quantum Mechanics
[5]   Bounds on the discrete spectrum of lattice Schrodinger operators [J].
Bach, V. ;
de Siqueira Pedra, W. ;
Lakaev, S. N. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)
[6]   Ultracold quantum gases in optical lattices [J].
Bloch, I .
NATURE PHYSICS, 2005, 1 (01) :23-30
[7]   Energy-momentum spectrum of some two-particle lattice Schrodinger Hamiltonians [J].
da Veiga, PAF ;
Ioriatti, L ;
O'Carroll, M .
PHYSICAL REVIEW E, 2002, 66 (01)
[8]   On the number of eigenvalues of a model operator related to a system of three particles on lattices [J].
Dell'Antonio, G. F. ;
Muminov, Z. I. ;
Shermatova, Y. M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (31)
[9]  
EFIMOV VN, 1971, SOV J NUCL PHYS+, V12, P589
[10]  
Faddeev L. D., 1993, Quantum Scattering Theory for Several Particle Systems, P398