Machine Learning Accelerated Real-Time Model Predictive Control for Power Systems

被引:6
|
作者
Hossain, Ramij Raja [1 ]
Kumar, Ratnesh [1 ]
机构
[1] Iowa State Univ, Dept Elect & Comp Engn, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
Voltage measurement; Sensitivity; Static VAr compensators; Machine learning; Power system stability; Real-time systems; Trajectory; model predictive control (MPC); neural network; perturbation control; voltage stabilization; TRAJECTORY SENSITIVITY-ANALYSIS; FREQUENCY; EMERGENCY;
D O I
10.1109/JAS.2023.123135
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a machine-learning-based speed-up strategy for real-time implementation of model-predictive-control (MPC) in emergency voltage stabilization of power systems. Despite success in various applications, real-time implementation of MPC in power systems has not been successful due to the online control computation time required for large-sized complex systems, and in power systems, the computation time exceeds the available decision time used in practice by a large extent. This long-standing problem is addressed here by developing a novel MPC-based framework that i) computes an optimal strategy for nominal loads in an offline setting and adapts it for real-time scenarios by successive online control corrections at each control instant utilizing the latest measurements, and ii) employs a machine-learning based approach for the prediction of voltage trajectory and its sensitivity to control inputs, thereby accelerating the overall control computation by multiple times. Additionally, a realistic control coordination scheme among static var compensators (SVC), load-shedding (LS), and load tap-changers (LTC) is presented that incorporates the practical delayed actions of the LTCs. The performance of the proposed scheme is validated for IEEE 9-bus and 39-bus systems, with & PLUSMN;20% variations in nominal loading conditions together with contingencies. We show that our proposed methodology speeds up the online computation by 20-fold, bringing it down to a practically feasible value (fraction of a second), making the MPC real-time and feasible for power system control for the first time.
引用
收藏
页码:916 / 930
页数:15
相关论文
共 50 条
  • [21] Machine Learning-Based Model Predictive Control of Two-Time-Scale Systems
    Alnajdi, Aisha
    Abdullah, Fahim
    Suryavanshi, Atharva
    Christofides, Panagiotis D.
    MATHEMATICS, 2023, 11 (18)
  • [22] A Machine Learning Approach for Real-time Battery Optimal Operation Mode Prediction and Control
    Henri, Gonzague
    Lu, Ning
    Carrejo, Carlos
    2018 IEEE/PES TRANSMISSION AND DISTRIBUTION CONFERENCE AND EXPOSITION (T&D), 2018,
  • [23] Machine Learning for Real-Time Heart Disease Prediction
    Bertsimas, Dimitris
    Mingardi, Luca
    Stellato, Bartolomeo
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (09) : 3627 - 3637
  • [24] Real-time monitoring of GPS flex power based on machine learning
    Yang, Xin
    Liu, Wenxiang
    Huang, Jinquan
    Xiao, Wei
    Wang, Feixue
    GPS SOLUTIONS, 2022, 26 (03)
  • [25] Real-Time HIL Emulation of DRM With Machine Learning Accelerated WBG Device Models
    Zhang, Songyang
    Liang, Tian
    Dinavahi, Venkata
    IEEE OPEN JOURNAL OF POWER ELECTRONICS, 2023, 4 : 567 - 578
  • [26] Real-time monitoring and optimization of machine learning intelligent control system in power data modeling technology
    Wang, Qiong
    Chen, Zuohu
    Zhou, Yongbo
    Liu, Zhiyuan
    Peng, Zhenguo
    MACHINE LEARNING WITH APPLICATIONS, 2024, 18
  • [27] Machine Learning in Real-Time Internet of Things (IoT) Systems: A Survey
    Bian, Jiang
    Al Arafat, Abdullah
    Xiong, Haoyi
    Li, Jing
    Li, Li
    Chen, Hongyang
    Wang, Jun
    Dou, Dejing
    Guo, Zhishan
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (11) : 8364 - 8386
  • [28] Machine Learning-Accelerated Method for Real-Time Optimization of Micro Energy-Water-Hydrogen Nexus
    Goodarzi, Mostafa
    Li, Qifeng
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2025, 16 (02) : 995 - 1006
  • [29] Real-Time Model Predictive Control for Shipboard Power Management Using the IPA-SQP Approach
    Park, Hyeongjun
    Sun, Jing
    Pekarek, Steven
    Stone, Philip
    Opila, Daniel
    Meyer, Richard
    Kolmanovsky, Ilya
    DeCarlo, Raymond
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2015, 23 (06) : 2129 - 2143
  • [30] REAL-TIME ANALYSIS FOR NONLINEAR MODEL PREDICTIVE CONTROL OF AUTONOMOUS VEHICLES
    Abbas, Muhammad Awais
    Eklund, J. Mikael
    Milman, Ruth
    2012 25TH IEEE CANADIAN CONFERENCE ON ELECTRICAL & COMPUTER ENGINEERING (CCECE), 2012,