Patients should be informed when AI systems are used in clinical trials

被引:10
作者
Perni, Subha [1 ,2 ,3 ]
Lehmann, Lisa Soleymani [2 ,4 ]
Bitterman, Danielle S. [1 ,2 ]
机构
[1] Harvard Med Sch, Artificial Intelligence Med Program, Mass Gen Brigham, Boston, MA 02115 USA
[2] Harvard Med Sch, Brigham & Womens Hosp, Dana Farber Canc Inst, Dept Radiat Oncol, Boston, MA 02115 USA
[3] Univ Texas TMD Anderson Canc Ctr, Houston, TX USA
[4] Harvard Med Sch, Harvard TH Chan Sch Publ Hlth, Boston, MA USA
关键词
ARTIFICIAL-INTELLIGENCE;
D O I
10.1038/s41591-023-02367-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
引用
收藏
页码:1890 / 1891
页数:2
相关论文
共 50 条
  • [41] How Well Do AI-Enabled Decision Support Systems Perform in Clinical Settings?
    Susanto, Anindya Pradipta
    Lyell, David
    Widyantoro, Bambang
    Berkovsky, Shlomo
    Magrabi, Farah
    MEDINFO 2023 - THE FUTURE IS ACCESSIBLE, 2024, 310 : 279 - 283
  • [42] AI-based clinical decision-making systems in palliative medicine: ethical challenges
    De Panfilis, Ludovica
    Peruselli, Carlo
    Tanzi, Silvia
    Botrugno, Carlo
    BMJ SUPPORTIVE & PALLIATIVE CARE, 2023, 13 (02) : 183 - 189
  • [43] Continuous ECG monitoring should be the heart of bedside AI-based predictive analytics monitoring for early detection of clinical deterioration
    Monfredi, Oliver J.
    Moore, Christopher C.
    Sullivan, Brynne A.
    Keim-Malpass, Jessica
    Fairchild, Karen D.
    Loftus, Tyler J.
    Bihorac, Azra
    Krahn, Katherine N.
    Dubrawski, Artur
    Lake, Douglas E.
    Moorman, J. Randall
    Clermont, Gilles
    JOURNAL OF ELECTROCARDIOLOGY, 2023, 76 : 35 - 38
  • [44] Can AI-supported Systems Help with Aftercare Planning? Opportunities and Challenges from a Clinical Perspective
    Grant, Natalie Victoria
    Bejan, Alexander
    Kunze, Christophe
    Burkhardt, Heinrich
    PROCEEDINGS OF THE 2024 CONFERENCE ON MENSCH UND COMPUTER, MUC 2024, 2024, : 655 - 659
  • [45] Problems and Barriers Related to the Use of AI-Based Clinical Decision Support Systems: Interview Study
    Giebel, Godwin Denk
    Raszke, Pascal
    Nowak, Hartmuth
    Palmowski, Lars
    Adamzik, Michael
    Heinz, Philipp
    Tokic, Marianne
    Timmesfeld, Nina
    Brunkhorst, Frank
    Wasem, Juergen
    Blase, Nikola
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2025, 27
  • [46] Clinical evaluation of AI-assisted muscle ultrasound for monitoring muscle wasting in ICU patients
    Nhat, Phung Tran Huy
    Hao, Nguyen Van
    Yen, Lam Minh
    Anh, Nguyen Hoang
    Khiem, Dong Phu
    Kerdegari, Hamideh
    Phuong, Le Thanh
    Hoang, Vo Tan
    Ngoc, Nguyen Thanh
    Thu, Le Ngoc Minh
    Trung, Truong Ngoc
    Pisani, Luigi
    Razavi, Reza
    Yacoub, Sophie
    Chau, Nguyen Van Vinh
    King, Andrew P.
    Thwaites, Louise
    Denehy, Linda
    Gomez, Alberto
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [47] Human-centered design and evaluation of AI-empowered clinical decision support systems: a systematic review
    Wang, Liuping
    Zhang, Zhan
    Wang, Dakuo
    Cao, Weidan
    Zhou, Xiaomu
    Zhang, Ping
    Liu, Jianxing
    Fan, Xiangmin
    Tian, Feng
    FRONTIERS IN COMPUTER SCIENCE, 2023, 5
  • [48] Immersive training of clinical decision making with AI driven virtual patients-a new VR platform called medical tr.AI.ning
    Mergen, Marvin
    Junga, Anna
    Risse, Benjamin
    Valkov, Dimitar
    Graf, Norbert
    Marschall, Bernhard
    GMS JOURNAL FOR MEDICAL EDUCATION, 2023, 40 (02):
  • [49] AI-driven decision support systems and epistemic reliance: a qualitative study on obstetricians’ and midwives’ perspectives on integrating AI-driven CTG into clinical decision making
    Rachel Dlugatch
    Antoniya Georgieva
    Angeliki Kerasidou
    BMC Medical Ethics, 25
  • [50] AI-driven decision support systems and epistemic reliance: a qualitative study on obstetricians' and midwives' perspectives on integrating AI-driven CTG into clinical decision making
    Dlugatch, Rachel
    Georgieva, Antoniya
    Kerasidou, Angeliki
    BMC MEDICAL ETHICS, 2024, 25 (01)