NORMALIZED SOLUTIONS OF FRACTIONAL CHOQUARD EQUATION WITH CRITICAL NONLINEARITY

被引:5
|
作者
Feng, Zhaosheng [1 ]
He, Xiaoming [2 ]
Meng, Yuxi [3 ]
机构
[1] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
[2] Minzu Univ China, Coll Sci, Beijing 100081, Peoples R China
[3] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
SCALAR FIELD-EQUATIONS; SCHRODINGER-EQUATIONS; GROUND-STATE; EXISTENCE; UNIQUENESS; MASS;
D O I
10.57262/die036-0708-593
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with normalized solutions of the fractional critical Choquard equation with a local perturbation and prescribed mass. For the L2-sub critical case, we study the mul-tiplicity of normalized solutions by applying the truncation technique, the concentration-compactness principle and the genus theory. For the L2-supercritical case, we obtain a couple of normalized solutions by de-veloping a fiber map and using the concentration-compactness principle.
引用
收藏
页码:593 / 620
页数:28
相关论文
共 50 条
  • [1] Normalized solutions for a critical fractional Choquard equation with a nonlocal perturbation
    Lan, Jiali
    He, Xiaoming
    Meng, Yuxi
    ADVANCES IN NONLINEAR ANALYSIS, 2023, 12 (01)
  • [2] Normalized solution for fractional Choquard equation with potential and general nonlinearity
    Jin, Zhen-Feng
    Sun, Hong-Rui
    Zhang, Jianjun
    Zhang, Weimin
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (07) : 1117 - 1133
  • [3] Normalized solutions to a kind of fractional Schrodinger equation with a critical nonlinearity
    Zhang, Penghui
    Han, Zhiqing
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (04):
  • [4] Normalized solutions to a kind of fractional Schrödinger equation with a critical nonlinearity
    Penghui Zhang
    Zhiqing Han
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [5] THE EXISTENCE AND ASYMPTOTIC BEHAVIOURS OF NORMALIZED SOLUTIONS FOR CRITICAL FRACTIONAL SCHRODINGER EQUATION WITH CHOQUARD TERM
    LI, Meng
    He, Jinchun
    Xu, Haoyuan
    Yang, Meihua
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, 43 (02) : 821 - 845
  • [6] Normalized Solutions of the Choquard Equation with Sobolev Critical Exponent
    Feng, Xiaojing
    Li, Yuhua
    FRONTIERS OF MATHEMATICS, 2025, : 581 - 601
  • [7] Multiple solutions for a quasilinear Choquard equation with critical nonlinearity
    Li, Rui
    Song, Yueqiang
    OPEN MATHEMATICS, 2021, 19 (01): : 1684 - 1698
  • [8] Multiple normalized solutions to critical Choquard equation involving fractional p-Laplacian in RN
    Zhang, Xin
    Nguyen, Thin Van
    Liang, Sihua
    ANALYSIS AND MATHEMATICAL PHYSICS, 2025, 15 (01)
  • [9] NORMALIZED SOLUTIONS TO LOWER CRITICAL CHOQUARD EQUATION WITH A LOCAL PERTURBATION
    LI, Xinfu
    Bao, Jianguang
    Tang, Wenguang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (05): : 3216 - 3232
  • [10] Normalized Ground States for the Critical Fractional Choquard Equation with a Local Perturbation
    He, Xiaoming
    Radulescu, Vicentiu D.
    Zou, Wenming
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (10)