Existence of solutions to a 1-Laplacian problem with a concave-convex nonlinearity

被引:2
作者
Chata, Juan Carlos Ortiz [1 ]
Pimenta, Marcos T. O. [1 ]
Leon, Sergio Segura de [2 ]
机构
[1] Univ Estadual Paulista Unesp, Dept Matemat & Comp, BR-19060900 Presidente Prudente, SP, Brazil
[2] Univ Valencia, Dept Anal Matemat, Valencia 46100, Spain
基金
巴西圣保罗研究基金会;
关键词
1-Laplacian operator; Singular term; Concave-convex nonlinearities; MULTIPLE POSITIVE SOLUTIONS; HOLDER LOCAL MINIMIZERS; DIRICHLET PROBLEM; ELLIPTIC-EQUATIONS; SOBOLEV;
D O I
10.1016/j.jmaa.2023.127149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we analyze a "concave-convex" type problem involving the 1-Laplacian operator in a general Lipschitz-continuous domain and prove the existence of two positive solutions. Owing to 1-Laplacian is 0-homogeneous, the "concave" term must be singular. Hence, we should deal with an energy functional having two non- differentiable terms: the total variation and that one coming from the singular term. Due to these difficulties, we do not get solutions as critical points of the energy functional defined in the BV(omega) space. Instead, we study problems involving the p-Laplacian operator and let p go to 1.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:25
相关论文
共 36 条
[1]   Positive solutions for Dirichlet problems of singular quasilinear elliptic equations via variational methods [J].
Agarwal, RP ;
Lü, HS ;
O'Regan, D .
MATHEMATIKA, 2004, 51 (101-02) :187-202
[2]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[3]  
Ambrosio L., 2000, OX MATH M, pxviii
[4]   Minimizing total variation flow [J].
Andreau, F ;
Ballester, C ;
Caselles, V ;
Mazón, JM .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (11) :867-872
[5]   The Dirichlet problem for the total variation flow [J].
Andreu, F ;
Ballester, C ;
Caselles, V ;
Mazón, JM .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (02) :347-403
[6]  
[Anonymous], 2006, VARIATIONAL ANAL SOB
[7]  
ANZELLOTTI G, 1983, ANN MAT PUR APPL, V135, P294
[8]   Multiplicity of solutions for a Dirichlet problem with a strongly singular nonlinearity [J].
Arcoya, David ;
Moreno-Merida, Lourdes .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 :281-291
[9]  
Arcoya D, 2013, DIFFER INTEGRAL EQU, V26, P119
[10]   Sobolev versus Holder local minimizers and global multiplicity for some quasilinear elliptic equations [J].
Azorero, JPG ;
Alonso, IP ;
Manfredi, JJ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2000, 2 (03) :385-404