Artificial intelligence in endoscopic imaging for detection of malignant biliary strictures and cholangiocarcinoma: a systematic review

被引:10
作者
Njei, Basile [1 ,2 ,3 ,8 ]
McCarty, Thomas R. [4 ]
Mohan, Babu P. [5 ]
Fozo, Lydia [6 ]
Navaneethan, Udayakumar [7 ]
机构
[1] Harvard Med Sch, Boston, MA USA
[2] Yale Univ, Sch Med, New Haven, CT USA
[3] Univ Oxford, Oxford, England
[4] Houston Methodist Hosp, Houston, TX USA
[5] Univ Utah, Sch Med, Salt Lake City, UT USA
[6] Johns Hopkins Univ, Baltimore, MD USA
[7] Orlando Hlth, Digest Hlth Inst, Orlando, FL USA
[8] Yale Univ, Sch Med, Invest Med Program, 2 Church St South,Suite 113, New Haven, CT 06519 USA
来源
ANNALS OF GASTROENTEROLOGY | 2023年
关键词
Artificial intelligence; endoscopic ultrasound; cholangioscopy; malignant biliary strictures; cholangiocarcinoma; DIAGNOSIS; MODALITIES; UTILITY; BIOPSY;
D O I
10.20524/aog.2023.0779
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Background Artificial intelligence (AI), when applied to computer vision using a convolutional neural network (CNN), is a promising tool in "difficult-to-diagnose" conditions such as malignant biliary strictures and cholangiocarcinoma (CCA). The aim of this systematic review is to summarize and review the available data on the diagnostic utility of endoscopic AI-based imaging for malignant biliary strictures and CCA.Methods In this systematic review, PubMed, Scopus and Web of Science databases were reviewed for studies published from January 2000 to June 2022. Extracted data included type of endoscopic imaging modality, AI classifiers, and performance measures.Results The search yielded 5 studies involving 1465 patients. Of the 5 included studies, 4 (n=934; 3,775,819 images) used CNN in combination with cholangioscopy, while one study (n=531; 13,210 images) used CNN with endoscopic ultrasound (EUS). The average image processing speed of CNN with cholangioscopy was 7-15 msec per frame while that of CNN with EUS was 200-300 msec per frame. The highest performance metrics were observed with CNN-cholangioscopy (accuracy 94.9%, sensitivity 94.7%, and specificity 92.1%). CNN-EUS was associated with the greatest clinical performance application, providing station recognition and bile duct segmentation; thus reducing procedure length and providing real-time feedback to the endoscopist.Conclusions Our results suggest that there is increasing evidence to support a role for AI in the diagnosis of malignant biliary strictures and CCA. CNN-based machine leaning of cholangioscopy images appears to be the most promising, while CNN-EUS has the best clinical performance application.
引用
收藏
页码:223 / 230
页数:9
相关论文
共 27 条
[1]   Cholangiocarcinoma 2020: the next horizon in mechanisms and management [J].
Banales, Jesus M. ;
Marin, Jose J. G. ;
Lamarca, Angela ;
Rodrigues, Pedro M. ;
Khan, Shahid A. ;
Roberts, Lewis R. ;
Cardinale, Vincenzo ;
Carpino, Guido ;
Andersen, Jesper B. ;
Braconi, Chiara ;
Calvisi, Diego F. ;
Perugorria, Maria J. ;
Fabris, Luca ;
Boulter, Luke ;
Macias, Rocio I. R. ;
Gaudio, Eugenio ;
Alvaro, Domenico ;
Gradilone, Sergio A. ;
Strazzabosco, Mario ;
Marzioni, Marco ;
Coulouarn, Cedric ;
Fouassier, Laura ;
Raggi, Chiara ;
Invernizzi, Pietro ;
Mertens, Joachim C. ;
Moncsek, Anja ;
Rizvi, Sumera ;
Heimbach, Julie ;
Koerkamp, Bas Groot ;
Bruix, Jordi ;
Forner, Alejandro ;
Bridgewater, John ;
Valle, Juan W. ;
Gores, Gregory J. .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2020, 17 (09) :557-588
[2]   Cholangiocarcinoma [J].
Brindley, Paul J. ;
Bachini, Melinda ;
Ilyas, Sumera I. ;
Khan, Shahid A. ;
Loukas, Alex ;
Sirica, Alphonse E. ;
Teh, Bin Tean ;
Wongkham, Sopit ;
Gores, Gregory J. .
NATURE REVIEWS DISEASE PRIMERS, 2021, 7 (01)
[3]   Gastroenterologist-Level Identification of Small-Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-Learning Model [J].
Ding, Zhen ;
Shi, Huiying ;
Zhang, Hao ;
Meng, Lingjun ;
Fan, Mengke ;
Han, Chaoqun ;
Zhang, Kun ;
Ming, Fanhua ;
Xie, Xiaoping ;
Liu, Hao ;
Liu, Jun ;
Lin, Rong ;
Hou, Xiaohua .
GASTROENTEROLOGY, 2019, 157 (04) :1044-+
[4]   Deep learning-enabled medical computer vision [J].
Esteva, Andre ;
Chou, Katherine ;
Yeung, Serena ;
Naik, Nikhil ;
Madani, Ali ;
Mottaghi, Ali ;
Liu, Yun ;
Topol, Eric ;
Dean, Jeff ;
Socher, Richard .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[5]  
FAGAN TJ, 1975, NEW ENGL J MED, V293, P257
[6]   Digital single-operator peroral cholangioscopy-guided biopsy sampling versus ERCP-guided brushing for indeterminate biliary strictures: a prospective, randomized, multicenter trial [J].
Gerges, Christian ;
Beyna, Torsten ;
Tang, Raymond S. Y. ;
Bahin, Farzan ;
Lau, James Y. W. ;
van Geenen, Erwin ;
Neuhaus, Horst ;
Reddy, Duvvur Nageshwar ;
Ramchandani, Mohan .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (05) :1105-1113
[7]  
Ghandour B, 2021, AM J GASTROENTEROL, V116, pS1
[8]   Application of artificial intelligence in pancreaticobiliary diseases [J].
Goyal, Hemant ;
Mann, Rupinder ;
Gandhi, Zainab ;
Perisetti, Abhilash ;
Zhang, Zhongheng ;
Sharma, Neil ;
Saligram, Shreyas ;
Inamdar, Sumant ;
Tharian, Benjamin .
THERAPEUTIC ADVANCES IN GASTROINTESTINAL ENDOSCOPY, 2021, 14
[9]   Trans-peritoneal fine needle aspiration biopsy of hilar cholangiocarcinoma is associated with disease dissemination [J].
Heimbach, Julie K. ;
Sanchez, William ;
Rosen, Charles B. ;
Gores, Gregory J. .
HPB, 2011, 13 (05) :356-360
[10]   Efficacy of digital single-operator cholangioscopy and factors affecting its accuracy in the evaluation of indeterminate biliary stricture [J].
Jang, Sunguk ;
Stevens, Tyler ;
Kou, Lei ;
Vargo, John J. ;
Parsi, Mansour A. .
GASTROINTESTINAL ENDOSCOPY, 2020, 91 (02) :385-+