The Impact of Noise on Evaluation Complexity: The Deterministic Trust-Region Case

被引:6
作者
Bellavia, Stefania [1 ]
Gurioli, Gianmarco [2 ]
Morini, Benedetta [1 ]
Toint, Philippe Louis [3 ]
机构
[1] Univ Firenze, Dipartimento Ingn Industriale, Florence, Italy
[2] CNR, Inst Informat Sci & Technol A Faedo ISTI, Pisa, Italy
[3] Univ Namur, Namur Ctr Complex Syst naXys, 61,Rue Bruxelles, B-5000 Namur, Belgium
关键词
Noise; Evaluation complexity; Trust-region methods; Inexact functions and derivatives; REGULARIZATION METHODS; GLOBAL CONVERGENCE; OPTIMIZATION; ALGORITHMS; BOUNDS;
D O I
10.1007/s10957-022-02153-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Intrinsic noise in objective function and derivatives evaluations may cause premature termination of optimization algorithms. Evaluation complexity bounds taking this situation into account are presented in the framework of a deterministic trust-region method. The results show that the presence of intrinsic noise may dominate these bounds, in contrast with what is known for methods in which the inexactness in function and derivatives' evaluations is fully controllable. Moreover, the new analysis provides estimates of the optimality level achievable, should noise cause early termination. Numerical experiments are reported that support the theory. The analysis finally sheds some light on the impact of inexact computer arithmetic on evaluation complexity.
引用
收藏
页码:700 / 729
页数:30
相关论文
共 35 条
[1]   CONVERGENCE OF TRUST-REGION METHODS BASED ON PROBABILISTIC MODELS [J].
Bandeira, A. S. ;
Scheinberg, K. ;
Vicente, L. N. .
SIAM JOURNAL ON OPTIMIZATION, 2014, 24 (03) :1238-1264
[2]   Adaptive regularization for nonconvex optimization using inexact function values and randomly perturbed derivatives [J].
Bellavia, S. ;
Gurioli, G. ;
Morini, B. ;
Toint, Ph. L. .
JOURNAL OF COMPLEXITY, 2022, 68
[3]   Stochastic analysis of an adaptive cubic regularization method under inexact gradient evaluations and dynamic Hessian accuracy [J].
Bellavia, Stefania ;
Gurioli, Gianmarco .
OPTIMIZATION, 2022, 71 (01) :227-261
[4]   Adaptive cubic regularization methods with dynamic inexact Hessian information and applications to finite-sum minimization [J].
Bellavia, Stefania ;
Gurioli, Gianmarco ;
Morini, Benedetta .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2021, 41 (01) :764-799
[5]   ADAPTIVE REGULARIZATION ALGORITHMS WITH INEXACT EVALUATIONS FOR NONCONVEX OPTIMIZATION [J].
Bellavia, Stefania ;
Guriol, Gianmarco ;
Morini, Benedetta ;
Toint, Philippe L. .
SIAM JOURNAL ON OPTIMIZATION, 2019, 29 (04) :2881-2915
[6]   GLOBAL CONVERGENCE RATE ANALYSIS OF A GENERIC LINE SEARCH ALGORITHM WITH NOISE [J].
Berahas, A. S. ;
Cao, L. ;
Scheinberg, K. .
SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (02) :1489-1518
[7]   ITERATION AND EVALUATION COMPLEXITY FOR THE MINIMIZATION OF FUNCTIONS WHOSE COMPUTATION IS INTRINSICALLY INEXACT [J].
Birgin, E. G. ;
Krejic, N. ;
Martinez, J. M. .
MATHEMATICS OF COMPUTATION, 2020, 89 (321) :253-278
[8]   ON THE EMPLOYMENT OF INEXACT RESTORATION FOR THE MINIMIZATION OF FUNCTIONS WHOSE EVALUATION IS SUBJECT TO ERRORS [J].
Birgin, E. G. ;
Krejic, N. ;
Martinez, J. M. .
MATHEMATICS OF COMPUTATION, 2018, 87 (311) :1307-1326
[9]  
Blanchet J., 2019, INFORMS J OPTIM, V1, P92
[10]  
Buckley A.G., 1989, Tech. Rep. CS-3