Sobolev orthogonality of polynomial solutions of second-order partial differential equations

被引:2
作者
Garcia-Ardila, Juan C. [1 ]
Marriaga, Misael E. [2 ]
机构
[1] Univ Politecn Madrid, Dept Matemat Aplicada Ingn Ind, Calle Jose Gutierrez Abascal 2, Madrid 28006, Spain
[2] Univ Rey Juan Carlos Spain, Dept Matemat Aplicada, Ciencia Ingn Mat & Tecnol Elect, Madrid, Spain
关键词
Bivariate orthogonal polynomials; Sobolev orthogonal polynomials; 2; VARIABLES; APPROXIMATION; SPACES;
D O I
10.1007/s40314-022-02152-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a second-order partial differential operator L with nonzero polynomial coefficients of degree at most 2, and a Sobolev bilinear form ( P, Q) S = N i=0 i j=0 u(i, j),. i- j x. j y P. i- j x. j y Q , N 0, where u(i, j), 0 j i N, are linear functionals defined on the space of bivariate polynomials, we study the orthogonality of the polynomial solutions of the partial differential equation L[ p] =.n,m p with respect to (center dot, center dot) S, where.n,m are eigenvalue parameters depending on the total and partial degree of the solutions. We show that the linear functionals in the bilinear form must satisfy Pearson equations related to the coefficients ofL. Therefore, we also study solutions of the Pearson equations that can be obtained from univariatemoment functionals. In fact, the involved univariate functionals must satisfy Pearson equations in one variable. Moreover, we study polynomial solutions of L[ p] =.n, m p obtained from univariate sequences of polynomials satisfying second-order ordinary differential equations.
引用
收藏
页数:44
相关论文
共 39 条
[1]  
Agahanov SA., 1965, VESTNIK LENINGRAD U, V20, P5
[2]   Sobolev Orthogonal Polynomials on a Simplex [J].
Aktas, Rabia ;
Xu, Yuan .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (13) :3087-3131
[3]   Bivariate orthogonal polynomials in the Lyskova class [J].
Alvarez de Morales, Maria ;
Fernandez, Lidia ;
Perez, Teresa E. ;
Pinar, Miguel A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 233 (03) :597-601
[4]   A matrix Rodrigues formula for classical orthogonal polynomials in two variables [J].
Alvarez de Morales, Maria ;
Fernandez, Lidia ;
Perez, Teresa E. ;
Pinar, Miguel A. .
JOURNAL OF APPROXIMATION THEORY, 2009, 157 (01) :32-52
[5]   New steps on Sobolev orthogonality in two variables [J].
Bracciali, Cleonice F. ;
Delgado, Antonia M. ;
Fernandez, Lidia ;
Perez, Teresa E. ;
Pinar, Miguel A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 235 (04) :916-926
[6]   Polynomial approximation in Sobolev spaces on the unit sphere and the unit ball [J].
Dai, Feng ;
Xu, Yuan .
JOURNAL OF APPROXIMATION THEORY, 2011, 163 (10) :1400-1418
[7]   Sobolev orthogonal polynomials on the unit ball via outward normal derivatives [J].
Delgado, Antonia M. ;
Fernandez, Lidia ;
Lubinsky, Doron S. ;
Perez, Teresa E. ;
Pinar, Miguel A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 440 (02) :716-740
[8]   Sobolev-type orthogonal polynomials on the unit ball [J].
Delgado, Antonia M. ;
Perez, Teresa E. ;
Pinar, Miguel A. .
JOURNAL OF APPROXIMATION THEORY, 2013, 170 :94-106
[9]   Sobolev Orthogonal Polynomials of Several Variables on Product Domains [J].
Duenas Ruiz, Herbert ;
Salazar-Morales, Omar ;
Pinar, Miguel .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
[10]   Sobolev orthogonal polynomials of high order in two variables defined on product domains [J].
Duenas Ruiz, Herbert ;
Pinzon-Cortes, Natalia ;
Salazar-Morales, Omar .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2017, 28 (12) :988-1008