Grain boundary and interface interaction Co-regulation promotes SnO2 quantum dots for efficient CO2 reduction

被引:26
作者
Wu, Zongdeng [1 ]
Jing, Haiyan [1 ]
Zhao, Ying [1 ,2 ]
Lu, Keren [1 ]
Liu, Boyuan [1 ]
Yu, Jia [1 ]
Xia, Xifeng [1 ]
Lei, Wu [1 ]
Hao, Qingli [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Chem & Chem Engn, Key Lab Soft Chem & Funct Mat, Minist Educ, Nanjing 210094, Jiangsu, Peoples R China
[2] Shandong Lab Yantai Adv Mat & Green Mfg, Yantai 264000, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
SnO2 quantum dots; Carbon framework; Grain boundaries; CO2; electroreduction; Formate; CARBON-DIOXIDE; SELECTIVE ELECTROREDUCTION; GRAPHENE SHEETS; MESOPOROUS SNO2; CATALYSTS; OXYGEN; NANOCRYSTALS; ZIF-8;
D O I
10.1016/j.cej.2022.138477
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
It is of great significance to explore the highly selective, excellent and stable electrocatalysts for electrochemical conversion of CO2 to hydrocarbons. Herein, we prepare SnO2 quantum dots (QDs) with abundant grain boundaries supported on MOF-derived hollow nitrogen-doped carbon (SnO2/NC) by a simple, low-cost, green method as an electrocatalyst for CO2 reduction. The obtained SnO2/NC exhibits high electrocatalytic performance for conversion of CO2 to formate with high selectivity. The Faradaic efficiency of formate (FEformate) formation is about 87.6 % at -1.13 V versus reversible hydrogen electrode (vs RHE). After 20 h electrolysis, the current density and FEformate of formate remains almost unchanged, showing significant stability. DFT calculations and experiments show that the strong interfacial interaction promotes the migration of electrons from the NC support to SnO2 QDs, which is beneficial to promote CO2 adsorption and activation to form *CO2-. Besides, SnO2 QDs have abundant grain boundaries to catalyze the conversion of CO2, and the porous structures are beneficial to improve the mass transfer rate and stability.
引用
收藏
页数:10
相关论文
共 53 条
  • [1] Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs
    Ambroz, Filip
    Macdonald, Thomas J.
    Martis, Vladimir
    Parkin, Ivan P.
    [J]. SMALL METHODS, 2018, 2 (11):
  • [2] Chainlike Mesoporous SnO2 as a Well-Performing Catalyst for Electrochemical CO2 Reduction
    Bejtka, Katarzyna
    Zeng, Juqin
    Sacco, Adriano
    Castellino, Micaela
    Hernandez, Simelys
    Farkhondehfal, M. Amin
    Savino, Umberto
    Ansaloni, Simone
    Pirri, Candido F.
    Chiodoni, Angelica
    [J]. ACS APPLIED ENERGY MATERIALS, 2019, 2 (05): : 3081 - 3091
  • [3] What Should We Make with CO2 and How Can We Make It?
    Bushuyev, Oleksandr S.
    De Luna, Phil
    Cao Thang Dinh
    Tao, Ling
    Saur, Genevieve
    van de lagemaat, Jao
    Kelley, Shana O.
    Sargent, Edward H.
    [J]. JOULE, 2018, 2 (05) : 825 - 832
  • [4] Boosting CO2 Electroreduction on N,P-Co-doped Carbon Aerogels
    Chen, Chunjun
    Sun, Xiaofu
    Yan, Xupeng
    Wu, Yahui
    Liu, Huizhen
    Zhu, Qinggong
    Bediako, Bernard Baffour Asare
    Han, Buxing
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (27) : 11123 - 11129
  • [5] Wavy SnO2 catalyzed simultaneous reinforcement of carbon dioxide adsorption and activation towards electrochemical conversion of CO2 to HCOOH
    Chen, Zhou
    Fan, Tingting
    Zhang, Ya-Qian
    Xiao, Jing
    Gao, Minrui
    Duan, Nanqi
    Zhang, Jiawei
    Li, Jianhui
    Liu, Qingxia
    Yi, Xiaodong
    Luo, Jing-Li
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2020, 261
  • [6] Biofunctionalized conductive polymers enable efficient CO2 electroreduction
    Coskun, Halime
    Aljabour, Abdalaziz
    De Luna, Phil
    Farka, Dominik
    Greunz, Theresia
    Stifter, David
    Kus, Mahmut
    Zheng, Xueli
    Liu, Min
    Hassel, Achim W.
    Schofberger, Wolfgang
    Sargent, Edward H.
    Sariciftci, Niyazi Serdar
    Stadler, Philipp
    [J]. SCIENCE ADVANCES, 2017, 3 (08):
  • [7] Metal-Organic Framework-Derived Carbon Nanorods Encapsulating Bismuth Oxides for Rapid and Selective CO2 Electroreduction to Formate
    Deng, Peilin
    Yang, Fan
    Wang, Zhitong
    Chen, Shenghua
    Zhou, Yinzheng
    Zaman, Shahid
    Xia, Bao Yu
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (27) : 10807 - 10813
  • [8] Monitoring the Chemical State of Catalysts for CO2 Electroreduction: An In Operando Study
    Dutta, Abhijit
    Kuzume, Akiyoshi
    Rahaman, Motiar
    Vesztergom, Soma
    Broekmann, Peter
    [J]. ACS CATALYSIS, 2015, 5 (12): : 7498 - 7502
  • [9] Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products
    Fan, Lei
    Xia, Chuan
    Yang, Fangqi
    Wang, Jun
    Wang, Haotian
    Lu, Yingying
    [J]. SCIENCE ADVANCES, 2020, 6 (08):
  • [10] 1D SnO2 with Wire-in-Tube Architectures for Highly Selective Electrochemical Reduction of CO2 to C1 Products
    Fan, Lei
    Xia, Zheng
    Xu, Meijia
    Lu, Yingying
    Li, Zhongjian
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (17)